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Summary

This course gives an introduction to quantum information theory. We use symmetries as a
guiding principle and toolbox to study the fundamental features of quantum mechanics and solve
quantum information processing tasks.
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Introduction to quantum mechanics, uncertainty principle
Lecture 1 Michael Walter, University of Amsterdam

By now, quantum information science is an established field, with theoreticians and experi-
mentalists seeking to exploit the laws of quantum mechanics to process information and compute
in fundamentally new and interesting ways. But quantum information theory also offers a fresh
perspective on fundamental physics, providing us with a versatile language and a useful toolbox
to clarify abstract notions such as information and computing and how they are realized in the
physical world.

This course on Symmetry and Quantum Information will give an introduction to this way of
thinking and provide you with a concrete toolbox for your future endeavors in quantum information
and computing. We will discuss a number of fundamental information theoretic problems, such as
the storage, measurement, compression, and transmission of quantum information. Our guiding
principle will be to identify the symmetries that are hidden behind these problems (an approach
that many of you may well be familiar from your previous courses in mathematics and physics),
and we will learn how to leverage those symmetries using the machinery of group representation
theory to solve the problems at hand.

1.1 Axioms of quantum mechanics

Today, we start with an introduction to the axioms (laws, postulates) of quantum mechanics.
We will careful go through each axiom and discuss a number of important consequences and
challenges that will motivate much of what we will study in this course. While the following
list will be roughly what you remember from a previous course on quantum mechanics, you
should think of it as a first attempt. As we go along this term, we will extend our repertoire
and rephrase these rules in equivalent but more useful terms from the perspective of quantum
information theory:

(A) Systems: To every quantum mechanical system, we associate a Hilbert space H. For a
joint system composed of two subsystems A and B, with Hilbert spaces HA and HB , the
Hilbert space is the tensor product HAB ∶=HA ⊗HB.

Throughout this course we will restrict to finite-dimensional Hilbert spaces. Recall that a
finite-dimensional Hilbert space is nothing but a vector space together with an inner product,
which we denote by ⟨−∣−⟩. Caution for mathematicians: We will take our inner product to be
anti-linear in the first argument!

The simplest quantum mechanical system is the qubit (short for quantum bit), described by
the two-dimensional Hilbert space H = C2. Thus a system composed of n qubits corresponds
to (C2)⊗n = C2 ⊗ C2 ⊗ . . . ⊗ C2. Note that the dimension of the latter space is 2n, which is
exponential in the number of qubits (particles). This explains some of the difficulty in simulating
quantum mechanics on an ordinary classical computer.

(B) Pure states: Unit vectors ∣ψ⟩ ∈H describe the state of a quantum mechanical system.
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Here we use Dirac’s “bra-ket” notation, with “kets” ∣ψ⟩ denoting vectors in H and “bras” ⟨ψ∣
denoting the corresponding dual vector in H∗, i.e., ⟨ψ∣ ∶= ⟨ψ∣−⟩. Thus, “bra” and “ket” together
give the inner product ⟨ϕ∣ψ⟩ = ⟨ϕ∣ ∣ψ⟩. A unit vector is a vector ∣ψ⟩ whose norm (or norm squared)
is equal to one, i.e., ⟨ψ∣ψ⟩ = 1. We will denote by X† the adjoint of an operator X between two
Hilbert spaces. (Note that we can think of ∣ψ⟩ ∈ H as an operator C → H, so that ⟨ψ∣ = ∣ψ⟩†.)
Note that the notation ∣ψ⟩ ⟨ψ∣ is precisely the orthogonal projection onto the one-dimensional
subspace spanned by ∣ψ⟩ (an orthogonal projection or “projector” is a linear operator P that
satisfies P 2 = P † = P ). In coordinates (i.e., for H = Cd), we have

∣ψ⟩ =
⎛
⎜
⎝

ψ1

⋮
ψd

⎞
⎟
⎠
, ⟨ψ∣ = (ψ1 ⋯ ψd) , ⟨ϕ∣ψ⟩ =

d

∑
i=1
ϕiψi, ∣ψ⟩ ⟨ϕ∣ =

⎛
⎜
⎝

ψ1ϕ1 . . . ψ1ϕd
⋮ ⋮

ψdϕ1 . . . ψdϕd

⎞
⎟
⎠

and the adjoint is given by the formula X† = (X)T =XT .
By default, when we speak of a basis of a Hilbert space then we always mean an orthonormal

basis. The standard basis or computational basis for C2 (a single qubit) is denoted by

∣0⟩ ∶= (1
0
) , ∣1⟩ ∶= (0

1
) .

We can think of these two states as a classical bit embedded into a qubit, {0,1} ∋ x↦ ∣x⟩ ∈ C2.
This makes sense because ⟨0∣1⟩ = 0 and so, as we shall see below, the two states ∣0⟩ and ∣1⟩ can
be perfectly distinguished. Likewise, for n qubits we write

∣i1 . . . in⟩ ∶= ∣i1, . . . , in⟩ ∶= ∣i1⟩⊗ . . .⊗ ∣in⟩

for the computational basis of (C2)⊗n.
The fact that for any two states ∣ϕ⟩ and ∣ψ⟩ we have an entire continuum of superposition

states α ∣ϕ⟩ + β ∣ψ⟩ of states is sometimes called the superposition principle.

Importantly, not every vector ∣ΨAB⟩ ∈ HA ⊗HB in a tensor product Hilbert space can be
written as a tensor product, i.e., in the form ∣ψA⟩⊗ ∣ϕB⟩ (a product state). In this case, we shall
say that ∣ΨAB⟩ is entangled. An example is the following state of two qubits,

∣Φ+⟩ ∶= 1√
2
(∣00⟩ + ∣11⟩) ∈ C2 ⊗C2,

which is known as the maximally entangled state, an EPR pair, or simply as an ebit. In Problem 1.1
you will show that ∣Φ+⟩ is indeed entangled.

Next lecture, we will see first indications that entanglement is a powerful resource for quantum
information processing (Lecture 2). Moreover, we will see that it can lead to strong correlations
that go beyond what can be produced by a classical (i.e., non-quantum) local theory (Lecture 3).

(C) Unitary dynamics: Given a unitary operator U on H, the transformation ∣ψ⟩↦ U ∣ψ⟩
is (in principle) physical. In other words, the laws of quantum mechanics allow a way of
evolving the quantum system for some finite time such that, when we start in an arbitrary
initial state ∣ψ⟩, the final state is U ∣ψ⟩.

Recall that a unitary operator is a operator U such that UU † = U †U = I, i.e., the adjoint is
the inverse (we denote identity operators by I). Unitary matrices are precisely those linear maps
that map unit vectors to unit vector, so the above makes sense. We denote the set of unitary
matrices by U(H).

We will use pictures such as the following to indicate an evolution by some unitary U :
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The relationship to the Schrödinger equation is that, in order to implement a given unitary, one
can evolve the quantum system for some time with a suitable Hamiltonian.

(D) Observables: Any Hermitian operator O on H corresponds to an observable quantity or
measurement. Let O = ∑x∈Ω xPx be the spectral decomposition. Then Born’s rule asserts
that the probability of outcome x in state ∣ψ⟩ is given by the Born rule:

Prψ(outcome x) = ⟨ψ∣Px∣ψ⟩ (1.1)

(We will often omit the subscript ψ if the state is clear.) Moreover, if the outcome is x
then the quantum state of the system “collapses” into the post-measurement state

∣ψ′⟩ = Px ∣ψ⟩
∥Px ∣ψ⟩∥

= Px ∣ψ⟩√
⟨ψ∣Px∣ψ⟩

. (1.2)

Measurements will be indicated as follows:

Convention: Here and in the following, single lines correspond to Hilbert spaces (quantum
information) and double lines refer to classical values (such as measurement outcomes).

Note that, as a consequence of Eq. (1.1), the expectation value of the measurement outcome
is given by

Eψ[outcome] = ∑
x∈Ω

x ⟨ψ∣Px∣ψ⟩ = ⟨ψ∣O∣ψ⟩ ,

so can be succinctly expressed in terms of the observable O.
Above we used the spectral theorem for Hermitian operators. This theorem asserts that any

Hermitian operator O can be diagonalized, with real eigenvalues and an orthonormal eigenbasis.
Thus we have a decomposition O = ∑x∈Ω xPx, where Ω ⊆ R is the set of eigenvalues of O and
Px is the orthogonal projection onto the corresponding eigenspace. Eigenspaces for distinct
eigenvalues are orthogonal, which means that PxPy = δx,yPx. Note that if an eigenspace is
one-dimensional and spanned by some unit vector ∣ex⟩, then we can write the corresponding
projector as Px = ∣ex⟩ ⟨ex∣.

Axiom (D) postulates that, in general, measurement outcomes are probabilistic and lead
to a “collapse” of the quantum state. This is a very fundamental statement with numerous
consequences. For example, it implies that quantum information cannot be copied or “cloned” (in
contrast to, say, the value of an ordinary bit in the memory of your computer). In fact, we will
find that when we want to process quantum information, we have to do so in a way that avoids
learning anything about the state of the qubit itself – for learning information is equivalent to
measuring aspects of the state, and measurement in general leads to “collapse” of the quantum
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state (in the sense of Eq. (1.2)). We will later see how to make this precise. This is a major
challenge and closely related to the “fragility” of quantum information – but it also gives rise to
a powerful way of constructing quantum communication protocols that we plan on discussing
towards the end of this term.

Given an observable O, which are states ∣ψ⟩ that are not “collapsed” by the measurement
of the observable? In other words, which are the states for which the post-measurement state
is equal to the state before the measurement – independently of the measurement outcome? It
is not hard to see that this happens precisely when ∣ψ⟩ is an eigenvector of O (by Eq. (1.2)),
i.e., when Px ∣ψ⟩ = δx,x0 ∣ψ⟩, where x0 is the corresponding eigenvalue. Equivalently, this means
that ⟨ψ∣Px∣ψ⟩ = δx,x0 , i.e., it is precisely those states for which the measurement outcome is
deterministic (“certain”).

A closely related question is which pairs of states {∣ψ⟩ , ∣ϕ⟩} can be perfectly distinguished by
some observable. That is, when does there exists an observable O such that when we measure on
∣ψ⟩ we always obtain outcome +1, while if we measure on ∣ϕ⟩ we always obtain outcome −1, as in
the following figure:

The answer is that this is possible precisely when the two states are orthogonal, i.e., ⟨ψ∣ϕ⟩ = 0.
Indeed, in this case we can measure, e.g., O = ∣ψ⟩ ⟨ψ∣ − ∣ϕ⟩ ⟨ϕ∣, which has ∣ψ⟩ as an eigenvector
with eigenvalue +1 and ∣ϕ⟩ as an eigenvector with eigenvalue −1. In Problem 1.4 you will show
the converse statement, i.e., that only orthogonal states can be distinguished perfectly.

Let’s close with one last and somewhat ominuous comment. A careful look at axioms (A)-(D)
reveals that the states ∣ψ⟩ and eiθ ∣ψ⟩ are completely indistinguishable. This means that there is
some redundancy when we characterize states by vectors – we should really identify all states
that can be obtained from each other by an overall phase. Mathematically, this means that we
should work with the projective space P(H) rather than with the unit sphere of H.

One convenient way to achieve this is to consider ∣ψ⟩ ⟨ψ∣, which is the orthogonal projection
onto the one-dimensional subspace spanned by the vector ∣ψ⟩. Note that the density operator
∣ψ⟩ ⟨ψ∣ is insensitive to multiplying the state by an overall phase eiθ. Conversely, we can recover
∣ψ⟩ up to phase by choosing any unit vector in the range of the operator ∣ψ⟩ ⟨ψ∣, so this achieves
precisely what we wanted. A useful notation is to write ψ ∶= ∣ψ⟩ ⟨ψ∣.

What kind of object is ψ? In particular, it is positive semidefinite (which we write as ψ ≥ 0)
and its trace is tr[ψ] = tr[∣ψ⟩ ⟨ψ∣] = ⟨ψ∣ψ⟩ = 1. But there are more such objects. Later on in
Lecture 7 we will see that this notion of a density operator provides a useful (and physical)
generalization of the notion of a quantum state.

1.2 Measuring a qubit

For an ordinary bit, there is essentially only a single interesting measurement: Is the bit in state
0 or is it in state 1? For a quantum bit, however, Axiom (D) provides us with infinitely many
inequivalent measurements that we can perform.
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For example, consider the three Pauli matrices

X = ( 1
1
) = ∣+⟩ ⟨+∣ − ∣−⟩ ⟨−∣ ,

Y = ( −i
i

) = ∣L⟩ ⟨L∣ − ∣R⟩ ⟨R∣ ,

Z = (1 −1) = ∣0⟩ ⟨0∣ − ∣1⟩ ⟨1∣ .

(1.3)

which are Hermitian and have eigenvalues ±1 (so they are also unitary!). On the right-hand side,
we indicated their spectral decomposition. The eigenvectors are

∣+⟩ = 1√
2
(∣0⟩ + ∣1⟩) , ∣−⟩ = 1√

2
(∣0⟩ − ∣1⟩) ;

∣L⟩ = 1√
2
(∣0⟩ + i ∣1⟩) , ∣R⟩ = 1√

2
(∣0⟩ − i ∣1⟩) .

as well as ∣0⟩ and ∣1⟩, which we have already met. Let’s discuss some interesting properties:
First, the three Pauli matrices together with the identity matrix form a basis of the real

vector space of the Hermitian 2× 2 matrices. This means that any Hermitian operator on C2 can
be written as O = αI + βX + γY + δZ for some α,β, γ, δ ∈ R. In fact, they form an orthonormal
basis with respect to the inner product (O,O′) ∶= tr[O†O′] = tr[OO′]. The latter can be easily
seen from the relations

XY = iZ, Y Z = iX, ZX = iY, (1.4)

together with the fact that the Pauli matrices are traceless.
Second, the Pauli matrices do not commute. This follows from Eq. (1.4), which implies

that [X,Y ] ∶= XY − Y X = 2iZ etc. (In fact, the Pauli matrices anti-commute, i.e., {X,Y } ∶=
XY + Y X = 0 etc.) In Problem 1.2 you will show that this implies that the order in which
we measure two Pauli matrices matters. In fact, this is a general feature of noncommuting
observables:

Exercise. Let X and Z be two arbitrary observables (not necessarily the Pauli matrices). Show
that the order of measurement (in the sense of Problem 1.2) is irrelevant (for every state) precisely
when [X,Z] = 0.

We will discuss another consequence of noncommutativity in the following section.

1.3 An uncertainty relation

Recall that we discussed above that the states for which the measurement outcome is deterministic
are precisely the eigenvectors of the corresponding observable. But no pair of Pauli operators
has a joint eigenvector, as is clear from the spectral decompositions in Eq. (1.3). This means
that, for every state ∣ψ⟩ and any pair of Pauli operators, say X and Z, there is necessarily some
uncertainty in either the measurement outcome for X or in the measurement outcome for Z
(or in both). We will now make this statement more quantitative. What could be good way to
quantify the uncertainty in a measurement outcome? Let us consider

∣⟨ψ∣X ∣ψ⟩∣ = ∣pX(1) − pX(−1)∣ = ∣2pX(1) − 1∣ = 2max{pX(1), pX(−1)} − 1 (1.5)
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where pX(x) denotes the probability of outcome x when measuring the observable X in state ψ.
Clearly,

0 ≤ ∣⟨ψ∣X ∣ψ⟩∣ ≤ 1.

When are these values saturated? The upper bound is saturated precisely when pX(1) = 1 or
when pX(1) = 0 (i.e., pX(−1) = 1), that is, when the measurement outcome is certain. On the
other hand, the lower bound is saturated when pX(1) = pX(−1) = 1/2, which means that the
measurement outcome is completely uncertain. Thus, ∣⟨ψ∣X ∣ψ⟩∣ provides a meanginful way to
quantify our certainty about the measurement outcome. By adding the upper bound for X and
for Z, we obtain that

∣⟨ψ∣X ∣ψ⟩∣ + ∣⟨ψ∣Z ∣ψ⟩∣ ≤ 2.

But note that this upper bound can never be saturated – otherwise ψ would be a state where
both outcomes are certain, and we have just argued that no such state exists. This means that,
in fact, ∣⟨ψ∣X ∣ψ⟩∣ + ∣⟨ψ∣Z ∣ψ⟩∣ < 2. We will now show a significant strengthening. Namely, we will
show that the sum of the two “certainties” cannot even exceed

√
2. Such a result is called an

uncertainty relation:

Lemma 1.1 (Uncertainty relation for Pauli matrices). For every state ∣ψ⟩, we have that

∣⟨ψ∣X ∣ψ⟩∣ + ∣⟨ψ∣Z ∣ψ⟩∣ ≤
√
2 < 2, (1.6)

and similarly for the other two pairs of Pauli matrices.

Proof. It suffices to show that

sX ⟨ψ∣X ∣ψ⟩ + sZ ⟨ψ∣Z ∣ψ⟩ = ⟨ψ∣ sXX + sZZ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶A

∣ψ⟩ ≤
√
2

for arbitrary signs sX , sZ ∈ {±1} (then just choose the signs so that the above expression amounts
to the sum of absolute values). For this, we start with

⟨ψ∣A∣ψ⟩ ≤ ∥A ∣ψ⟩∥ ≤ ∥A∥ ∶= sup
∥∣ϕ⟩∥=1

∥A ∣ϕ⟩∥,

where the first inequality is the Cauchy-Schwarz inequality and in the second we recalled the
definition of the operator norm operator norm ∥A∥. But note that

A†A = A2 = (sXX + sZZ)(sXX + sZZ) = I + sXsZ (XZ +ZX)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

+I = 2I,

where we used that any pair of Pauli matrices anticommutes. The preceding calculation shows
that A/

√
2 is unitary. But the operator norm of any unitary operator is one, so

∥A∥ =
√
2∥ A√

2
∥ =
√
2.

We thus obtain the bound that we wanted to show.

Here is an illustration of the region excluded by the uncertainty relation (1.6):
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We close with one final remark on the interpretation of ∣⟨ψ∣Xψ⟩∣, the quantity that we used
to quantify the certainty of the measurement outcome. Note that the probability pguess,X ∶=
max{pX(1), pX(−1)} is precisely the maximal probability of guessing the outcome of an X-
measurement on the state ∣ψ⟩ (just go for the event that has the larger probability – there is no
better way). It is often called the guessing probability in the literature. Using this notation and
Eq. (1.5), we can rewrite Eq. (1.6) as follows:

pguess,X + pguess,Z ≤ 1 +
1√
2
< 2

This way of writing the uncertainty relation has a very transparent interpretation. It simply
bounds the sum of the probabilities of guessing the two measurement outcomes correctly.

Uncertainty relations of the above form are powerful since they make nontrivial predictions
for every quantum state (the upper bound is nontrivial and in fact independent of ψ). More
sophisticated uncertainty relations play an important role in quantum cryptography.
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Symmetry and Quantum Information February 6, 2018

Entanglement as a resource, generalized measurements
Lecture 2 Michael Walter, University of Amsterdam

Last time we discussed the axioms of quantum mechanics and in particular the measurement of
observables and some consequences. In particular, for any observable with spectral decomposition
O = ∑x∈Ω xPx, the probability of measurement outcomes is given by Born’s rule

Prψ(outcome x) = ⟨ψ∣O∣ψ⟩ = ∥Px ∣ψ⟩∥2, (2.1)

and the post-measurement state is given Px ∣ψ⟩ /∥Px ∣ψ⟩∥. (For the second step in Eq. (2.1),
we used that P 2

x = Px for any projection Px.) Note that the preceding only makes use of the
collection of projections {Px}x∈Ω rather than the observable O itself. As discussed last time,
we have that P 2

x = P
†
x = Px, ∑x Px = I, and PxPy = δx,yPx for all x, y ∈ Ω. We will refer to any

collection of projections {Px}x∈Ω which these properties as a projective measurement.
Any projective measurement can be implemented by the measurement of an observable – but

this repackaging is often quite useful. For example, we can easily allow for arbitrary finite index
sets Ω, not just subsets of R (as one would get for the eigenvalues of a Hermitian operator). This
is just a simple relabeling – the resulting projective measurements are just as physical.

Before we launch into the main subject of today’s lecture, let us discuss one last aspect that
we only mentioned in passing last time:

(E) Operations on subsystems: Consider a joint system with Hilbert spaceHAB =HA⊗HB .
If we want to perform a unitary UA on the subsystem modeled byHA, then the appropriate
unitary on the joint system is UA ⊗ IB. Similarly, if OA is an observable on HA then the
appropriate observable on the joint system is OA ⊗ IB.

Equivalently, if {PA,x}x∈Ω is a projective measurement on HA then the corresponding mea-
surement on HAB is {PA,x⊗IB}x∈Ω. Note that the set of possible measurement outcomes remains
the same (OA and OA ⊗ IB have the same eigenvalues, albeit with different multiplicities), which
is of course what we expect.

Let’s consider an example. Take the ebit state, ∣Φ+AB⟩ = 1√
2
(∣00⟩ + ∣11⟩) = 1√

2
∑1
i=0 ∣i⟩A ⊗

∣i⟩B. Let ∣ex⟩ be an arbitrary basis of C2 and PA,x ∶= ∣ex⟩ ⟨ex∣A the corresponding projective
measurement. Then,

PrΦ+(outcome x) = ⟨Φ+AB ∣PA,x ⊗ IB ∣Φ+AB⟩ =
1

2
∑
i,j

(⟨i∣A ⊗ ⟨i∣B) (PA,x ⊗ IB) (∣j⟩A ⊗ ∣j⟩B)

= 1

2
∑
i,j

⟨iA∣PA,x∣jA⟩ ⟨iB ∣IB ∣jB⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=δi,j

= 1

2
∑
i,j

⟨iA∣PA,x∣iA⟩ =
1

2
tr[PA,x] =

1

2
,

(2.2)

since the trace of a projection is equal to its rank. This is quite interesting – even though the
joint system is in a well-defined state, measurement outcomes on the subsystem are completely
uninformative: For any projective measurement with two outcomes we obtain either outcome
with 50% probability. We will later see how this is related to the usefulness of the ebit for
information processing tasks.

Indeed, this is what we are going to discuss next. We will consider two communication
scenarios where entanglement helps. This will also help us clarify the distinctions between bits
and qubits.

13



2.1 Encoding bits into qubits, superdense coding

Consider a scenario where a sender – commonly called Alice – would like to send one out of M
possible classical messages to a receiver – commonly called Bob – by sending a single qubit. Here
is a sketch of a possible communication protocol :

What is the maximal M such that Bob can perfectly decode the classical message? This requires
that the message states ∣ψm⟩ are all orthogonal, since only orthogonal quantum states can
be distinguished perfectly (i.e., with zero probability of error), as we discussed this last time.
Thus, M ≤ 2, since there are at most two orthogonal states in a two-dimensional Hilbert space.
But M = 2 can clearly be achieved – simply encode into any orthonormal basis, such as the
computational basis: ∣ψm⟩ ∶= ∣m⟩ for m ∈ {0,1}. In summary, we found that that we can
(perfectly) communicate at most a single bit sending over a qubit.

Remark. A stronger statement holds: It is even impossible to communicate at an asymptotic
rate higher than the trivial one classical bit per qubit sent. This is a consequence of the Holevo
bound that we might discuss later in this course.

Superdense coding

We will now see that we can do better by using entanglement. For this, consider the following
set of vectors in C2 ⊗C2:

∣ϕ0⟩ ∶=
1√
2
(∣00⟩ + ∣11⟩) = (I ⊗ I) ∣Φ+⟩ , (2.3)

∣ϕ1⟩ ∶=
1√
2
(∣00⟩ − ∣11⟩) = (Z ⊗ I) ∣Φ+⟩ , (2.4)

∣ϕ2⟩ ∶=
1√
2
(∣10⟩ + ∣01⟩) = (X ⊗ I) ∣Φ+⟩ , (2.5)

∣ϕ3⟩ ∶=
1√
2
(∣10⟩ − ∣01⟩) = (XZ ⊗ I) ∣Φ+⟩ . (2.6)

Note that the ∣ϕm⟩ is an orthonormal basis, so the four states can be perfectly distinguished
by a two-qubit measurement. Moreover, as indicated on the right, each of the four states can
be produced from the ebit by applying one out of the four unitaries I,Z,X,XZ on Alice’s side.
Let’s abbreviate this by ∣ϕm⟩AB =∶ (UA,m ⊗ IB) ∣Φ+AB⟩.

The preceding considerations suggest the following communication protocol, called superdense
coding :

(i) Assume that Alice and Bob share an ebit ∣Φ+⟩AB.

(ii) To send m ∈ {0,1,2,3}, Alice applies the unitary UA,m to her qubit and sends it over to
Bob.
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(iii) Upon receiving Alice’s qubit, Bob performs the projective measurement {PAB,m ∶=
∣ϕm⟩ ⟨ϕm∣AB} on the two qubits in his possession. The measurement outcome is Al-
ice’s message.

Here is an illustration of superdense coding:

To summarize: Superdense coding allows Alice to send over two bits (i.e., one out of four messages)
to Bob, provided Alice and Bob share an ebit.

Remark. Of course, in order to establish the ebit between Alice and Bob, some form of prior
quantum communication must have occurred (which could also have been used to send a bit). But
the point is that the ebit state is completely independent of the message that will later be sent by
making use of it, so this could have happened a long time in the past. Thus, shared entanglement
in the form of the ebit is a resource that, once established, can be used for interesting tasks
(such as communicating classical bits at twice the rate than would be possible without the shared
entanglement).

We will now consider the reverse problem.

2.2 Encoding qubits into bits, teleportation

Suppose Alice would like to communicate an unknown qubit state ∣ψ⟩ to Bob (i.e., a quantum
message!), but is only able to send a classical bitstring over to Bob. Can she do it?

(The second box corresponds to an arbitrary preparation procedure that only depends on the
transmitted bitstring x.) This is clearly impossible, provided that they want to achieve this
task perfectly. An easy way to see this is that there are only finitely possible values for x, but
infinitely many quantum states – so there must be two distinct quantum states corresponding to
the same x, a contradiction.

Another argument is the following: Suppose that the protocol works for arbitrary qubit states,
so in particular for ∣0⟩ and ∣+⟩. Then the protocol must send over different values x for these
two states. But this means that we have built a measurement that perfectly distinguishes two
non-orthogonal quantum states – what we previously discussed to be impossible.

In summary, it is not possible to (perfectly) communicate an unknown qubit state using any
number of classical bits.
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Teleportation

We will now see that this task becomes possible in the presence of shared entanglement. The
protocol is called teleportation and it looks as follows:

The protocol uses the same elements as above – but in a different order and on different subsystems.
Let us explain the notation in the protocol and see why it works:

(i) The initial state is ∣ψ⟩M ⊗ ∣Φ+AB⟩. Here, ∣ψ⟩M is the qubit states that Alice would like to
send over to Bob, and Alice and Bob share an ebit ∣Φ+⟩AB.

(ii) Next, Alice measures {PMA,m ∶= ∣ϕm⟩ ⟨ϕm∣MA} (the same measurement that Bob used
previously to decode) and sends the outcome m over to Bob. Since m ∈ {0,1,2,3}, this
requires two bits.

(iii) Lastly, Bob applies the unitary UB,m.

What is the state after Alice’s measurement? Using the rules for measuring subsystems
discussed at the beginning of this section, we calculate:

(PMA,m ⊗ IB) (∣ψ⟩M ⊗ ∣Φ+AB⟩)
= ∣ϕm⟩MA ⊗ (⟨ϕm∣MA ⊗ IB) (∣ψ⟩M ⊗ ∣Φ+AB⟩)

= ∣ϕm⟩MA ⊗ (⟨Φ+∣MA (U
†
M,m ⊗ IA)⊗ IB) (∣ψ⟩M ⊗ ∣Φ

+
AB⟩)

= ∣ϕm⟩MA ⊗ (⟨Φ+∣MA ⊗ IB) (IM ⊗ ∣Φ+AB⟩)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 1
2 ∑i,j(⟨i∣M⊗⟨i∣A⊗IB)(IM⊗∣j⟩A⊗∣j⟩B)=

1
2 ∑i∣i⟩B⟨i∣M=

1
2
IM→B

U †
M,m ∣ψ⟩M

= 1

2
∣ϕm⟩MA ⊗U

†
B,m ∣ψ⟩B ,

since, as shown in the calculation, the underbraced expression is simply one half times IM→B,
the identity map from the qubit labeled M to the qubit labeled B. Thus the normalized post-
measurement state is given by ∣ϕm⟩MA ⊗U

†
B,m ∣ψ⟩B. Therefore, if Bob applies the unitary UB,m

the resulting state is ∣ϕm⟩MA ⊗ ∣ψ⟩B. Thus, Bob obtains the desired state in his subsystem,
independent of the measurement outcome.

Using Eq. (2.1), note that each measurement outcomes occurs with probability 1/4 – irre-
spective of state ∣ψ⟩M that Alice wants to teleport to Bob. This can be interpreted as meaning
that Alice does not learn anything about the teleported state. We will later in this course see
that this is both necessary and sufficient for a teleportation scheme to succeed!
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What happens if the message qubit is entangled with another subsystem? In other words,
what does the teleportation protocol do when applied to the initial state is ∣ψ⟩ME⊗ ∣Φ+⟩AB , where
E is an additional system? In Problem 1.3 you will show that the result is ∣ψ⟩BE ⊗ ∣ϕm⟩AB . Thus,
Bob’s qubit is now entangled with E in the same way that previously Alice’s qubit was entangled
with E. We call this entanglement swapping and it can be used to establish entanglement between
subsystems that have not initially been entangled!

2.3 Resource inequalities

As mentioned, we can think of the ebit as a resource. Similarly, the capability of sending a
classical bit or a quantum bit can be though of as resources, which we will denote by [c→ c] and
[q → q], respectively. More generally, we write formal linear combinations such as ebit + 2[c→ c]
for combinations of these resources.

We can use this notation to conveniently summarize the results of the preceding sections.
E.g.,

[q → q] ≥ [c→ c]
means that we can send a classical bit by sending over a quantum bit, where we take inequality
sign ≥ as meaning that the left-hand side resources are sufficient to implement the right-hand
side resources (allowing arbitrary local quantum operations on Alice and Bob’s side). Further,

[q → q] /≥ 2[c→ c], while ebit + [q → q] ≥ 2[c→ c];
the last inequality is due to superdense coding. Moreover,

n[c→ c] /≥ [q → q], while ebit + 2[c→ c] ≥ [q → q];
the first inequality states that no number of classical bits enable the capability to send over an
unknown qubit state, and the second holds by teleportation. We could also write:

2[c→ c] ≡ [q → q] (mod ebit)
Furthermore, it is clear that

[q → q] ≥ ebit,

and it is intuitive plausible (and we will prove later) that

nebit /≥ [q → q], nebit /≥ [c→ c],
meaning that shared entanglement alone cannot be used to communicate.

2.4 Generalized measurements

To conclude today’s lecture, let us return to the subject of measurements. So far, we always used
observables or projective measurements

O = ∑
x∈Ω

xPx ↔ {Px}x∈Ω.

Are these the most general measurement schemes enabled by quantum mechanics? No, we
certainly think of more general measurement schemes! Suppose that we couple our system A to
an auxiliary system B that is initialized in a fixed state, ∣ψ⟩A ↦ ∣ψ⟩A ⊗ ∣0⟩B. We then apply an
arbitrary projective measurement on the joint system, modelled by some {PAB,x}. The subscript
AB reminds us that we are applying a projective measurement on the full system. See below for
illustration:
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What is the probability of an outcome x? According to Eq. (2.1), it is given by

Pr(outcome x) = (⟨ψ∣A ⊗ ⟨0∣B)PAB,x (∣ψ⟩A ⊗ ∣0⟩B) = ⟨ψA∣
⎛
⎜⎜⎜
⎝
(IA ⊗ ⟨0∣B)PAB,x (IA ⊗ ∣0⟩B)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶Qx

⎞
⎟⎟⎟
⎠
∣ψA⟩ ,

where we have introduce new operators Qx on HA. These operators have the property that (i)
Qx ≥ 0 and (ii) ∑xQx = IA.

We will call any collection of operators {Qx}x∈Ω satisfying properties (i) and (ii) a generalized
measurement or a POVM (measurement) (POVM is short for positive-operator valued measure).
The Qx are called POVM elements. A POVM measurement that has precisely two outcomes
is called a binary POVM measurement, and it has the form {Q, I −Q}, hence is specified by a
single POVM element 0 ≤ Q ≤ I. As we saw above, the Born rule for POVM measurements takes
the familiar form

Pr(outcome x) = ⟨ψ∣Qx∣ψ⟩ . (2.7)

POVM measurements are truely more general than projective measurements. In Problem 1.5
you will study a state discrimination scenario where POVM measurements outperform projective
measurements. From a mathematical point, the Qx need not be pairwise orthogonal nor
projections.

Example. The four operators 1
2 ∣0⟩ ⟨0∣,

1
2 ∣1⟩ ⟨1∣,

1
2 ∣+⟩ ⟨+∣,

1
2 ∣−⟩ ⟨−∣ make up a POVM with four

possible outcomes. It can be thought of performing either a projective measurement in the basis
∣0⟩,∣1⟩ or in the basis ∣+⟩,∣−⟩, with 50% probability each.

Example 2.1. Another example is the POVM that consists of the three (mutually non-orthogonal)
operators {23 ∣0⟩ ⟨0∣ ,

2
3 ∣α

+⟩ ⟨α+∣ , 23 ∣α
−⟩ ⟨α−∣}, where ∣α±⟩ = 1

2 ∣0⟩±
√
3
2 ∣1⟩. Indeed, it is easily verified

that
2

3
∣0⟩ ⟨0∣ + 2

3
∣α+⟩ ⟨α+∣ + 2

3
∣α−⟩ ⟨α−∣ = I.

Unlike the previous example, this POVM cannot be decomposed in an interesting way.

Importantly, any POVM is physical, i.e., can be implemented in the above fashion by a
projective measurement on a larger system. This is not hard to show, but we will not. (Can you
fill in the proof yourself?)

Remark. This way of realizing a POVM fits nicely with our intuitive model of measuring a
quantum system: we couple it to an apparatus B, apply a unitary interaction, and read off the
result at the apparatus by measuring an ordinary observable. The last two steps can be combined
into a projective measurement.

In fact, POVM measurements are the most general “memoryless” measurements (with finitely
many outcomes, as we defined them) provided by quantum mechanics. Yet, note that a POVM
only prescribes the probabilities of outcomes, but not the post-measurement state. In general,

18



there are many different ways of implementing a POVM {Qx}x∈Ω by a projective measurement
on a larger system.

We have just expanded our toolbox by a more general class of measurements. This might leave
you slighly worried – is it still true that only orthogonal states can be perfectly distinguished?
(Remember that we used this important property both last lecture and today.) Fortunately this
is indeed the case, as you will show in Problem 1.5.
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Symmetry and Quantum Information February 12, 2018

Quantum correlations, non-local games, rigidity
Lecture 3 Michael Walter, University of Amsterdam

In the past two lectures, we discussed some of the nonclassical features of quantum mechanics.
In particular, we explored superpositions (such as ∣+⟩ = (∣0⟩ + ∣1⟩)/

√
2), entanglement (∣Ψ⟩AB ≠

∣ψ⟩A ⊗ ∣ϕ⟩B), and non-commuting observables ([X,Y ] ≠ 0), and we discussed how these features
impose both challenges (e.g., non-orthogonal states cannot be distinguished perfectly) and
opportunities (e.g., entanglement gives rise to superdense coding and teleportation).

Today, we will discuss another way of quantifying the distinction between classical and
quantum mechanics, namely through the correlations predicted by these theories. A modern
perspective of studying and comparing correlations is through the notions of a nonlocal game.
This is closely related to Bell inequalities, which you may remember from your quantum mechanics
class – but we will discuss some interesting new aspects that you may not have seen before.

Nonlocal games

In a nonlocal game, we imagine that a number of players play against a referee. The referee
hands them questions and the players reply with appropriate answers that win them the game.
The players’ goal is to collaborate and maximize their chances of winning. Before the game, the
players meet and may agree upon a joint strategy – but then they move far apart from each other
and cannot communicate with each other while the game is being played (this can be ensured by
the laws of special relativity). The point then is the following: Since the players are constrained
by the laws of physics, we can design games where players utilizing a quantum strategy may have
an advantage. This way of reasoning about quantum correlations is eminently operational and
quantitative, as we will see in the following.

3.1 The GHZ game

The GHZ (Greenberger-Horne-Zeilinger) game is a famous example of a nonlocal game due to
Mermin. Figure 1 illustrates the setup of the GHZ game. It involves three players – Alice, Bob,
and Charlie. Each receives as questions a bit x, y, z ∈ {0,1} and their answers are likewise bits
a, b, c ∈ {0,1}. They win the game if the sum of their answers modulo 2 is as follows:

x y z a⊕ b⊕ c
0 0 0 0
1 1 0 1
1 0 1 1
0 1 1 1

Note that not all bit strings xyz are questions that the referee asks. The winning condition can
be succinctly stated as follows: a⊕ b⊕ c = x ∨ y ∨ z. We write ⊕ for addition modulo 2 and ∨ for
the logical or.

Classical strategies

It is easy to see that the GHZ game cannot be won if the players’ strategies are described by a
“local” and “realistic” theory. Here, “local” means that each player’s answer does only depend on
its immediate surroundings, and “realistic” means that the strategy assigns a definite answer to
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Figure 1: Setup of the three-player GHZ game. The winning condition is that a⊕ b⊕ c = x∨ y ∨ z.

any possible question – before that question is being asked. Thus in a local and realistic theory
we assume that

a = a(x), b = b(y), c = c(z).

When we say that the players may jointly agree on a strategy before the game is being played, we
mean that they may select “question-answer functions” a, b, c in a correlated way. For example,
when the players meet before the game is being played, they could flip a coin, resulting in some
random λ ∈ {0,1}, and agree on the strategy a(x) = x⊕ λ, b(y) = y ⊕ λ, c(z) = z ⊕ λ. Thus, in
mathematical terms, the functions a, b, c can be correlated random variables. This does not at
all influence the agument below.

Equivalently, we could say that λ is a “hidden variable”, with some probability distribution
pλ(0) = pλ(1) = 1/2, and consider a = a(x,λ) as a deterministic function of both the input and
the hidden variable. You will discuss this point of view in Problem 2.3.

If the players strategy can be described by classical mechanics then the above would provide
an adequate model. Thus, strategies of this form are usually referred to as local hidden variable
strategies or simply as classical strategies.

Suppose now for sake of finding a contradiction that Alice, Bob, and Charlie can win the
GHZ game perfectly using such a classical strategy. Then,

1 = 0⊕ 1⊕ 1⊕ 1

= (a(0)⊕ b(0)⊕ c(0))⊕ (a(1)⊕ b(1)⊕ c(0))⊕ (a(1)⊕ b(0)⊕ c(1))⊕ (a(0)⊕ b(1)⊕ c(1))
= 0.

The first equality is plainly true, the second holds since we assumed that the strategy is perfect,
and the last equality holds because a(x) ⊕ a(x) ≡ 0 etc., whatever the value of a(x). This is
a contradiction! We conclude that there is no perfect classical winning variable strategy for
the GHZ game. Suppose, e.g., that the referee selects each possible question xyz with equal
probability 1/4. Then the game can be won with probability at most

pwin,cl ≤ 3/4, (3.1)

since the players must get at least one of the four possible answers wrong. This winning probability
can be achieved by, e.g., the trivial strategy a(x) = b(y) = c(z) ≡ 1.

Exercise. Equation (3.1) can be thought of as a “Bell inequality”. If you have seen a Bell
inequality in your quantum mechanics class: Do you see the connection?

Quantum strategies

In a quantum strategy, we imagine that the three players are described by quantum mechanics.
Thus they start out by sharing an arbitrary joint state ∣ψ⟩ABC ∈ HA ⊗HB ⊗HC , where HA is
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the Hilbert space describing a quantum system in Alice’ possession, etc., and upon receiving
their questions x, y, z ∈ {0,1} they will measure corresponding observables Ax, By, Cz on their
respective Hilbert spaces. While it might not be immediately obvious, any classical strategy is
also a quantum strategy, as you will show in Problem 2.3.

It will be convenient to take the eigenvalues (i.e., measurement outcomes) of the observables
to be in {±1} rather than in {0, 1}. Provided the outcome of Alice’s measurement of Ax is (−1)a,
she sends back a as the answer, etc. In this case, the eigenvalues of the observable Ax ⊗By ⊗Cz
are (−1)a+b+c = (−1)a⊕b⊕c, and they correspond precisely to the sum modulo two of the answers.
Thus, a perfect quantum strategy is one where

(A0 ⊗B0 ⊗C0) ∣ψ⟩ABC = + ∣ψ⟩ABC ,
(A1 ⊗B1 ⊗C0) ∣ψ⟩ABC = − ∣ψ⟩ABC ,
(A1 ⊗B0 ⊗C1) ∣ψ⟩ABC = − ∣ψ⟩ABC ,
(A0 ⊗B1 ⊗C1) ∣ψ⟩ABC = − ∣ψ⟩ABC

(3.2)

(recall from Lecture 1 that an observable always give the same outcome precisely when the state
is an eigenvector, with eigenvalue equal to that outcome). In Problem 2.3 you will verify that,
more generally,

pwin,q =
1

2
+ 1

8
⟨ψABC ∣A0 ⊗B0 ⊗C0 −A1 ⊗B1 ⊗C0 −A1 ⊗B0 ⊗C1 −A0 ⊗B1 ⊗C1∣ψABC⟩

is the probability of winning the GHZ game (for uniform choice of questions xyz).

Remarkably, there is a quantum strategy for the GHZ game that allows the players to win
the game every single time (i.e., pwin,q = 1). Following Watrous, we assume that the players share
the three-qubit state

∣Γ⟩ABC =
1

2
(∣000⟩ − ∣110⟩ − ∣101⟩ − ∣011⟩) ∈ C2 ⊗C2 ⊗C2, (3.3)

where we imagine that the first qubit is in Alice’s possession, the second in Bob’s, and the third
in Charlie’s. Upon receiving x = 0, Alice measures the Pauli observable A0 = Z = ( 1 0

0 −1 ) on her
qubit, while upon receiving x = 1 she measures the Pauli observable A1 = X = ( 0 1

1 0 ) . Bob and
Charlie perform exactly the same strategy on their qubits. To see that this quantum strategy
wins the GHZ game every single time, we only need to verify (3.2). Indeed:

(Z ⊗Z ⊗Z) ∣Γ⟩ABC = ∣Γ⟩ABC ,

(X ⊗X ⊗Z) ∣Γ⟩ABC =
1

2
(∣110⟩ − ∣000⟩ − (−1) ∣011⟩ − (−1) ∣101⟩) = − ∣Γ⟩ABC ,

and similarly (X ⊗Z ⊗X) ∣Γ⟩ABC = (Z ⊗X ⊗X) ∣Γ⟩ABC = − ∣Γ⟩ABC .
This shows that in a precise quantitative sense, quantum mechanics enables stronger “non-local

correlations” than what is possible using a local realistic theory.

A glance a device-independent quantum cryptography

When the three players perform the optimal strategy described above then not only do their
answers satisfy the winning condition but their answers are in fact completely random, subject
only to the constraint that a ⊕ b ⊕ c must sum to the desired value x ∨ y ∨ z. In particular,
a, b ∈ {0,1} are two independent random bits. You can easily verify this by inspection: E.g., for
x = y = z = 0, Alice, Bob, and Charlie each measure their local Z observable. The eigenvectors
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are ∣abc⟩ and so it is clear from Eq. (3.3) that we obtain abc ∈ {000,110,101,011} with equal
probability 1/4.

The randomness obtained in this way is also private. We will only discuss this in a very
heuristic sense and you are not expected to follow the details, but I would still like to give you an
impression. Suppose that apart from Alice, Bob, Charlie, there is also an evil eavesdropper (Evan)
who would like to learn about the random bits generated in this way. Their joint state can be
described by a pure state ∣ψ⟩ABCE . If Alice, Bob, and Charlie indeed share the state in Eq. (3.3)
(or for that matter any pure state) then it must be the case that ∣ψ⟩ABCE = ∣Γ⟩ABC ⊗ ∣ψ⟩E . We
will see how to formalize this statement in Lecture 8. It follows that the random bits a and b are
completely uncorrelated from any measurement that Evan can do on his E system (Problem 2.2).
All this means that the referee can use the players’ answers to generate private randomess – they
simply lock Alice, Bob, and Charlie (best thought of as quantum devices) into his laboratory,
ensure that the devices cannot communicate, and interrogate them with questions, as in the
following picture:

But of course, the referee cannot in general trust Alice, Bob, and Charlie to actually play the
strategy above! So this observation might seem not very useful at first glance. . .

However, what if the optimal strategy for winning the GHZ game was actually unique? In
this case, the referee could test Alice, Bob, and Charlie with randomly selected questions and
check that they pass the test every time. After a while, the referee might be confident that the
players are in fact able to win the GHZ game every time. But then, by uniqueness of the winning
strategy, the referee should in fact know the precise strategy that Alice, Bob, and Charlie are
pursuing! The referee in this case would not have to put any trust in Alice, Bob, Charlie – they
would prove their worth by winning the GHZ game every time around.

This remarkable idea for generating private random bits was first proposed by Colbeck. (Note
that we need private random bits in the first place to generate the random questions – thus this
protocol proposes to achieve a task known as randomness expansion. Private random bits cannot
be generated without an initial seed of random bits.) The argument sketched so far is of course
not rigorous at all: ignoring questions of robustness, we need to take into account that Alice,
Bob, Charlie may not behave the same way every time we play the game, may have a (quantum)
memory, etc.

These challenges can be circumvented and secure randomness expansion protocols using
completely untrusted devices do exist (see, e.g., the review Acín and Masanes (2016))! This
general line of research is known as device-independent quantum cryptography, since it does not
rely on assumptions on the inner workings of the devices involved, but only on their observed
correlations. Other applications of include device-independent quantum key distribution.

3.2 Rigidity of the GHZ game

In the remainder of the lecture, we will show that the winning strategy for the GHZ game is
indeed essentially unique (following Colbeck and Kent). We say that the GHZ game is rigid – or
that it is a self-test for the state (3.3).

Let us first observe that in the three-qubit strategy discussed above, the state ∣Γ⟩ABC is
already uniquely determined by the measurement operators: Indeed, any eigenvector of Z⊗Z⊗Z
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is necessarily of the form α ∣000⟩ + β ∣110⟩ + γ ∣101⟩ + δ ∣011⟩, and the other three conditions are
only satisfied if α = −β = −γ = −δ, so we obtain (3.3) up to an overall phase.

Let us now consider a general strategy given by operators Ax, By, Cz with A2
x = I etc. and

a state ∣ψ⟩ABC ∈HA ⊗HB ⊗HC that is optimal, so that Eq. (3.2) are satisfied. Our approach
to proving the rigidity theorem will be to uncover some hidden symmetries in the problem to
reduce to the case of three qubits:

Claim 3.1 (Informal). In any optimal strategy, the observables must anticommute: “{A0,A1} = 0,
{B0,B1} = 0, {C0,C1} = 0” (see below for fine-print).

We will prove this claim later, but let us see first see how this allows us to identify three qubits
on which the observables Ax act like the Pauli operators from our optimal quantum strategy.

How to find a qubit?

Consider, e.g., the pair of observables A0,A1. By assumption, they satisfy A2
0 = A2

1 = I as well
as {A0,A1} = 0. Since A2

0 = ±I, its eigenvalues are ±1. If ∣ϕ⟩ be an eigenvector of A0 with
eigenvalue ±1, i.e., A0 ∣ϕ⟩ = ± ∣ϕ⟩, then

A0A1 ∣ϕ⟩ = −A1A0 ∣ϕ⟩ = −A1(±1 ∣ϕ⟩) = ∓A1ϕ,

so A1 ∣ϕ⟩ is an eigenvector of A0 with eigenvalue ∓1. This means that the unitary A1 interchanges
the two eigenspaces of A0. In particular, both must have the same dimension, which we shall
denote by mA. Moreover, if {∣e0,j⟩}j=1,...,mA

is an orthonormal basis of the +1-eigenspace then
the vectors ∣e1,j⟩ ∶= A1 ∣e0,j⟩ form an orthonormal basis of the −1-eigenspace. But this means
that the unitary defined by

UA∶HA → C2 ⊗Cd, ∣ei,j⟩↦ ∣i⟩⊗ ∣j⟩ .

maps A0 and A1 to the desired Pauli Z and X operators acting on the qubit C2 on the right-hand
side:

UA0U
† = Z ⊗ I, UA1U

† =X ⊗ I.

Indeed,

UA0U
† ∣i, j⟩ = UA0 ∣ei,j⟩ = U(−1)i ∣ei,j⟩ = (−1)i ∣i, j⟩ = (Z ⊗ I) ∣i, j⟩

UA1U
† ∣i, j⟩ = UA1 ∣ei,j⟩ = U ∣ei⊕1,j⟩ = ∣i⊕ 1, j⟩ = (X ⊗ I) ∣i, j⟩

To summarize: We found that HA ≅ C2⊗CmA such that A0, A1 act by Z ⊗ I, X ⊗ I, respectively.
The same argument works for Bob and Charlie’s pairs of observables. Thus the total Hilbert

space decomposes as

HA ⊗HB ⊗HC ≅ (C2 ⊗C2 ⊗C2)⊗ (CmA ⊗CmB ⊗CmC)

and the measurement operators act as in the three-qubit solution on the first tensor factor. E.g.,

A0 ≅ (Z ⊗ I ⊗ I)⊗ (I ⊗ I ⊗ I),
A1 ≅ (X ⊗ I ⊗ I)⊗ (I ⊗ I ⊗ I),

etc. We saw above that in the three-qubit solution the state is uniquely determined by the
measurement operators. Thus,

∣ψ⟩ABC = ∣Γ⟩⊗ ∣γ⟩A′B′C′ ,
where ∣Γ⟩ ∈ C2 ⊗ C2 ⊗ C2 is the three-qubit state from Eq. (3.3) and ∣γ⟩ ∈ CmA ⊗ CmB ⊗ CmC

some auxiliary state (which is irrelevant because the observables do not act on it). This is the
desired rigidity result.
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Anticommutations from correlations (proof of claim 3.1)

We still need to prove Claim 3.1. We first rewrite the optimality condition (3.2) as

A0 ∣ψ⟩ = +B0C0 ∣ψ⟩
A0 ∣ψ⟩ = −B1C1 ∣ψ⟩
A1 ∣ψ⟩ = −B1C0 ∣ψ⟩
A1 ∣ψ⟩ = −B0C1 ∣ψ⟩ .

Here and in the following we write A0 instead of A0 ⊗ IB ⊗ IC , etc., to make the formulas more
transparent. From the first two and last two equations, respectively,

A0 ∣ψ⟩ = +
1

2
(B0C0 −B1C1) ∣ψ⟩

A1 ∣ψ⟩ = −
1

2
(B1C0 +B0C1) ∣ψ⟩

Hence,

A0A1 ∣ψ⟩ = −
1

4
(B1C0 +B0C1) (B0C0 −B1C1) ∣ψ⟩ = −

1

4
(B1B0 −C0C1 +C1C0 −B0B1) ∣ψ⟩ ,

A1A0 ∣ψ⟩ = −
1

4
(B0C0 −B1C1) (B1C0 +B0C1) ∣ψ⟩ = −

1

4
(B0B1 −C1C0 +C0C1 −B1B0) ∣ψ⟩ ,

where we used that B2
y = I, C2

z = I, and that each By commutes with each Cz (indeed, remember
that these were just shorthand notation for I ⊗By ⊗ I and I ⊗ I ⊗Cz, so they clearly commute!).
We can summarize this as:

{A0,A1} ∣ψ⟩ = 0
This is almost what we wanted to show! How can we show that {A0,A1} = 0?

This is in fact not exactly true – hence the “quotes” in Claim 3.1. But what is true is that
{A0,A1} = 0 on a subspace H̃A of HA such that ∣ψ⟩ABC ∈ H̃A⊗HB⊗HC . Indeed, we can expand

∣ψ⟩ABC =∑
i

si ∣ei⟩A ⊗ ∣fi⟩BC

where the ∣ei⟩ and ∣fi⟩ are orthonormal and si > 0 – this is called the Schmidt decomposition and
we will discuss it in more detail in a future lecture. If there are dim H̃A terms then the ∣ei⟩ form
a basis of HA and so {A0,A1} ∣ψ⟩ = 0 implies that {A0,A1} = 0. Otherwise, we can restrict to
the subspace H̃A ∶= span{∣ei⟩A}. In the latter case, ∣ψ⟩ABC ∈ H̃A ⊗HB ⊗HC , the operators Ax
are block diagonal with respect to H̃A ⊕ H̃⊥a , and {A0,A1} = 0 on H̃A. We can proceed likewise
for By and Cz.

Statement of the rigidity theorem

What have we proved? In mathematical terms, we have established the following theorem:

Theorem 3.2 (Rigidity for the GHZ game). Consider an optimal strategy for the GHZ game
given by operators Ax, By, Cz with A2

x = IA etc. and a state ∣ψ⟩ABC ∈ HA ⊗HB ⊗HC . Then
there exist isometries VA∶C2 ⊗HA′ →HA, VB ∶C2 ⊗HB′ →HB, VC ∶C2 ⊗HC′ →HC such that

(i) ∣ψ⟩ABC = (VA ⊗ VB ⊗ VC)(∣Γ⟩⊗ ∣γ⟩) for some ∣γ⟩ ∈HA′ ⊗HB′ ⊗H′C .

(ii) V †
AA0VA = Z ⊗ IA′ , V †

AA1VA =X ⊗ IA′, and similarly for By and Cz.

In the coming lectures, we will revisit many of the techniques used above in a more systematic
way. I would suggest that you come back to this lecture at the end of the term – at this point
you should be well equipped to write up a complete proof of Theorem 3.2.
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Outlook

There are many further aspects of nonlocal games related to what we discussed in this lecture.
For example, is the rigidity theorem robust in the sense that if we win the GHZ game with almost
one then our strategy must be “close” to the strategy described above? And how do winning
probabilities and optimal strategies behave when one plays many instances of a game – either in
multiple rounds (sequentially) or even at the same time (in parallel)? (It is clear that if p is the
optimal winning probability for a single instance then for n instances the winning probability is
at least pn – but we might be able to do better by using strategies that exploit correlations or
entanglement in a clever way!)
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Pure state estimation, symmetric subspace
Lecture 4 Michael Walter, University of Amsterdam

Today’s goal: State estimation

Suppose we are given a quantum system and we would like to learn about the underlying quantum
state ∣ψ⟩. Is there a measurement that gives us a classical description “ψ” of the state ∣ψ⟩? Clearly,
this cannot be done perfectly – since otherwise we could distinguish non-orthogonal states (by
comparing their classical description), and we know that this is impossible (Problem 1.4)!

On the other hand, suppose that we are not given just one copy of a state, but in fact many
copies ∣ψ⟩⊗n. Then

(⟨ψ∣⊗n) (∣ϕ⟩⊗n) = ⟨ψ⊗n∣ϕ⊗n⟩ = ⟨ψ∣ϕ⟩n → 0

provided the two states are not equal – suggesting that we can distinguish them arbitrarily well.
Of course, since ⟨ψ∣ϕ⟩ can be arbitrarily close to one, we have to be careful. But note that in the
latter case the states are essentially indistinguishable (cf. Problem 1.4), and so we make only a
small error by identifying them.

To state today’s goal in a rigorous way, we have to discuss one last formality. In Lecture 1,
we discussed how we cannot distinguish between the vectors ∣ψ⟩ and eiη ∣ψ⟩ – they really define
the same quantum state. We mentioned that a good way of getting rid of this “gauge freedom” is
by considering the projector ψ ∶= ∣ψ⟩ ⟨ψ∣ instead. We will always use this convention – if ∣ψ⟩ is a
unit vector then ψ refers to the corresponding projector! We call ψ (sometimes also sloppily ∣ψ⟩)
a pure quantum state.

Remark. Note that we can rephrase all our axioms in terms of ψ. For example, the unitary
evolution ∣ψ⟩↦ U ∣ψ⟩ now becomes ψ ↦ UψU † = U ∣ψ⟩ ⟨ψ∣U †. Born’s rule for a POVM {Qx} reads
Prψ(outcome x) = tr[ψQx] = tr[∣ψ⟩ ⟨ψ∣Qx] = ⟨ψ∣Qx∣ψ⟩, and if {Qx} is a projective measurement
then the post-measurement state for outcome x reads ψ′ = PxψPx/ tr[Pxψ].

Remark. The name suggests that there also exist a more general notion of a quantum state. For
example, the subsystems of the ebit state cannot be described by a pure state (i.e., a vector in
C2). Can you see why this follows from Eq. (2.2)?

Next week, in Lecture 7, we will introduce a more general notion of a quantum state which
allows us to model this situation. These are the so-called non-pure or mixed quantum states,
and we will see that they can always be described by a pure state on a larger state. Thus the
situation is completely parallel to the case of measurements, where we identified a larger class
of measurements (the POVM measurements) which could nevertheless be implemented using
ordinary projective measurements on a larger system. But for today we focus on the important
case of pure states.

Given our preceding discussion, it seems plausible that we can achieve the following task,
known as pure state estimation:

We want to find a POVM {Qψ̂}ψ̂∈Ω on (Cd)⊗n, with possible outcomes Ω = {ψ̂ = ∣ψ̂⟩ ⟨ψ̂∣}
the set of pure states on Cd, such that when we measure on ψ⊗n = ∣ψ⟩⊗n ⟨ψ∣⊗n we obtain an
outcome ψ̂ that is “close” to ψ (on average, or even with high probability).
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We will quantify “closeness” using (the square of) the fidelity ∣⟨ψ̂∣ψ⟩∣, which you know from
Problem 1.4, and of course how well we can do will depend on the number of copies n that we
are given (the more the easier) and the Hilbert space dimension d (the higher the harder).

4.1 Continuous POVMs

In the statement of the pure state estimation problem, we are faced with another difficulty. The
set of outcomes Ω is infinite (even continuously so), but so far we have only discussed POVMs
with finitely many outcomes. How can we generalize the concept of a POVM to an infinite set of
outcomes Ω (e.g., the set of all real numbers R, the set of all pure quantum states, . . . )?

For simplicity, let us assume that the space of outcomes Ω carries some measure dx. (E.g.,
if Ω = R we could choose Lebesgue measure.) Then the conditions on {Qx}x∈Ω to be a POVM
measurement are as follows: (i) Qx ≥ 0, as before, and (ii) ∫Ω dxQx = I, and Born’s rule now
states that

pψ(x) = ⟨ψ∣Qx∣ψ⟩ (4.1)

is the probability density (!) of the outcome distribution with respect to the measure dx.

Remark. Moreover, x ↦ Qx must be a measurable function. We will always consider Borel
measures, so that measurability is ensured by continuity.

Thus, probabilities and expectation values can be computed as follows:

Prψ(outcome ∈ S) = ∫
S
dx ⟨ψ∣Qx∣ψ⟩ ,

Eψ [f(x)] = ∫ dx ⟨ψ∣Qx∣ψ⟩ f(x). (4.2)

We will call {Qx} (together with our choice of dx) a continuous POVM (though we will usually
omit dx when it is clear from the context).

Remark. Given the data that we have, we can assign to any (measurable) subset X ⊆ Ω an
operator Q(X) ∶= ∫X dxQx. We have that (i) Q(X) ≥ 0, (ii) Q(∅) = 0, and (iii) Q(⋃kXk) =
∑kQ(Xk) for any collection (Xk) of disjoint subsets of Ω. Thus, Q behaves just like a measure –
except that each Q(X) is a positive semidefinite operators instead of a nonnegative number. This
explains the term “positive semidefinite operator-valued measure (POVM)”.

Remark 4.1 (Ordinary POVMs). POVMs with finitely many outcomes as discussed in Section 2.4
are a special case of the above setup. Indeed, if Ω is finite then we can always choose the so-called
counting measure dx, which assigns to any subset S ⊆ Ω its cardinality. Then, ∫ dx = ∑x and so
we recognize the postulates from Section 2.4.

Just like in the discrete case, any continuous POVM is physical in the sense that it can be
implemented using the laws of quantum mechanics.

Remark. You might be concerned whether we need infinite-dimensional Hilbert spaces in order
to implement continuous POVMs. This is not so – Chiribella showed that any continuous POVM
on a finite-dimensional Hilbert space can be implemented in the following fashion. (1) Let λ be
the result of sampling from a suitable (continuous) probability distribution. (2) Measure a finite
POVM labeled by λ.
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We have yet to specify which measure we would like to put on the set of pure states. One
desirable property of such a measure is that it treats all quantum states the same. That is, if we
substitute ∣ψ⟩↦ U ∣ψ⟩ then we would like all expectation values to remain unchanged:

∫ dψf(ψ) = ∫ dψf(UψU †) (4.3)

for any integrable function f and any unitary d × d matrix U ∈ U(d). One can show (but it
requires some work so we will not) that there exists a unique probability measure dψ that is
unitarily invariant in this sense. We call this measure dψ the uniform probability measure on the
set of pure quantum states (sometimes, it is also referred to as the Haar measure).

Remark. Here are three examples of measures that are similarly uniquely determined by their
symmetries:

• For a finite set S, there exists a unique probability measure which is invariant under
relabeling (permuting) the elements of S: the uniform probability distribution on S.

• There exists a unique measure on R that assigns measure one to the interval [0,1] and
which is invariant under translations x↦ x + a: the Lebesgue measure.

• There exists a unique probability measure on the unit sphere S2 that is invariant under
rotations in SO(3). Similarly for higher-dimensional unit spheres.

We can think of the set of pure states as the unit sphere of Cd modulo phases, so it is plausible
that the measure dψ exists.

4.2 Symmetric subspace

In order to come up with a good POVM for estimating pure states, we need to talk about the
symmetries inherent in this problem: If ∣ψ⟩ ∈ Cd then not only is ∣ψ⟩⊗n ∈ (Cd)⊗n, but ∣ψ⟩⊗n is
invariant under permuting the subsystems. Let’s make this a bit more precise.

Let Sn denote the symmetric group on n symbols. Its elements are permutations π∶{1, . . . , n}→
{1, . . . , n}. Thus, Sn has n! elements. This is a group, meaning that products and inverses are
again contained in Sn. For any π ∈ Sn, we can define an operator Rπ on the n-fold tensor power
(Cd)⊗n in the following way:

Rπ ∣ψ1⟩⊗ . . .⊗ ∣ψn⟩ = ∣ψπ−1(1)⟩⊗ . . .⊗ ∣ψπ−1(n)⟩

It is clear that
R1 = I, RτRπ = Rτπ (4.4)

Indeed, the latter is guaranteed by our judicious use of inverses:

RτRπ ∣ψ1⟩⊗ . . .⊗ ∣ψn⟩ = Rτ ∣ψπ−1(1)⟩⊗ . . .⊗ ∣ψπ−1(n)⟩
= Rτ ∣ψπ−1(1)⟩⊗ . . .⊗ ∣ψπ−1(n)⟩
= ∣ψπ−1(τ−1(1))⟩⊗ . . .⊗ ∣ψπ−1(τ−1(n))⟩
= ∣ψ(τπ)−1(1)⟩⊗ . . .⊗ ∣ψ(τπ)−1(n)⟩
= Rτπ ∣ψ1⟩⊗ . . .⊗ ∣ψn⟩ .

Equation (4.4) says that the map π ↦ Rπ turns (Cd)⊗n into a representation of the symmetric
group Sn. In fact, it is a unitary representation, which means that the operators Rπ are all
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unitary. Next week, we will more formally introduce the machinery of group and representation
theory, but today we would like to see why it is useful.

Let us return to the vectors ∣ψ⟩⊗n. Clearly, they have the property that Rπ ∣ψ⟩⊗n = ∣ψ⟩⊗n for
all π. That is, ∣ψ⟩⊗n are elements of the symmetric subspace

Symn(Cd) = {∣Φ⟩ ∈ (Cd)⊗n ∶ Rπ ∣Φ⟩ = ∣Φ⟩}.

The physicists among you may know the symmetric subspace as the n-particle sector of the
bosonic Fock space for d modes.

Given an arbitrary vector ∣Φ⟩ ∈ (Cd)⊗n, we can always symmetrize it to obtain a vector in
the symmetric subspace. Indeed, let us define the symmetrizer

Πn =
1

n!
∑
π∈Sn

Rπ

This operator is the orthogonal projector on the symmetric subspace. Let’s verify this: (i) If ∣Φ⟩
is in the symmetric subspace then Πn ∣Φ⟩ = ∣Φ⟩:

Πn ∣Φ⟩ =
1

n!
∑
π∈Sn

Rπ ∣Φ⟩ =
1

n!
∑
π∈Sn

∣Φ⟩ = ∣Φ⟩ .

(ii) For any vector ∣Φ⟩ ∈ (Cd)⊗n, the vector ∣Φ̃⟩ = Πn ∣Φ⟩ is in the symmetric subspace:

Rτ ∣Φ̃⟩ = Rτ(Πn ∣Φ⟩) = Rτ
1

n!
∑
π∈Sn

Rπ ∣Φ⟩ =
1

n!
∑
π∈Sn

Rτπ ∣Φ⟩ =
1

n!
∑
π′∈Sn

Rπ′ ∣Φ⟩ = Πn ∣Φ⟩ = ∣Φ̃⟩ .

Here, we used that as π ranges over all permutations, so does π′ = τπ (indeed, we obtain any π′

exactly from π = τ−1π′). (iii) The operator Πn is Hermitian:

Π†
n =

1

n!
∑
π∈Sn

R†
π =

1

n!
∑
π∈Sn

R−1π =
1

n!
∑
π∈Sn

Rπ−1 =
1

n!
∑
π∈Sn

Rπ = Πn.

The second equality holds because the operators Rπ are unitary, the third holds for any represen-
tation (i.e., as a consequence of Eq. (4.4)), and the fourth because π ↦ π−1 is a bijection for any
group.

In particular, we can obtain a basis of the symmetric subspace by taking a basis ∣i⟩ of Cd,
considering a tensor product basis element ∣i1, . . . , in⟩, and symmetrizing. The result does not
depend on the order of the elements, but only on the number of times ti =#{ik = i − 1}. Thus
Symn(Cd) has the occupation number basis

∥t1, . . . , td⟫∝ Πn(∣1⟩⊗t1 ⊗ . . .⊗ ∣d⟩⊗td), (4.5)

where ti ≥ 0 and ∑i ti = n. The ti’s are called occupation numbers and (t1, . . . , td) is called a type.

Example (n=2,d=2). A basis of Sym2(C2) is given by

∥2,0⟫ = ∣00⟩ , ∥1,1⟫ = 1√
2
(∣10⟩ + ∣01⟩) , ∥0,2⟫ = ∣11⟩ .

Note that we can complete this to a basis of C2 ⊗C2 by adding the antisymmetric singlet state
(∣10⟩ − ∣01⟩)/

√
2. It is true more generally that (Cd)⊗2 = Sym2(Cd)⊕⋀2(Cd).

In general, there are (n+d−1n
) such basis vectors and therefore

dimSymn(Cd) = trΠn = (
n + d − 1

n
) = (n + d − 1)!

n!(d − 1)! .

32



A resolution of the identity for the symmetric subspace

The reason why we studied the symmetric subspace is that it contains the states ∣ψ⟩⊗n that
arise in our estimation problem. Not every vector in Symn(Cd) is of this form – for example,
1√
2
(∣01⟩+ ∣10⟩) isn’t. Moreover, the ∣ψ⟩⊗n are not orthogonal. Nevertheless, we have the following

alternative formula for the projection onto the symmetric subspace:

Πn = (
n + d − 1

n
)∫ dψ ∣ψ⟩⊗n ⟨ψ∣⊗n , (4.6)

where the measure dψ is the uniform probability distribution on the set of pure states that we
discussed at the end of the preceding section.

One way of interpreting Eq. (4.6) is that the vectors ∣ψ⟩⊗n form an “overcomplete basis” of
the symmetric subspace. Indeed, if ∣Φ⟩ is an arbitrary vector then, using Eq. (4.6), we find that

∣Φ⟩ = Πn ∣Φ⟩ = (
d + n − 1

n
)∫ dψ ∣ψ⟩⊗n ⟨ψ⊗n∣Ψ⟩ = ∫ dψ cψ(Ψ) ∣ψ⟩⊗n ,

where cψ(Ψ) = (d+n−1n
) ⟨ψ⊗n∣Ψ⟩. This implies that we can write ∣Φ⟩ as a linear combination of

the states ∣ψ⟩⊗n. (See Lemma 12.5 for a more concrete proof of this fact.)
Another way to interpret Eq. (4.6), though, is that it shows that

Qψ̂ = (
d + n − 1

n
) ∣ψ̂⟩⊗n ⟨ψ̂∣⊗n (4.7)

defines a continuous POVM {Qψ̂} on the symmetric subspace! Indeed, Qψ̂ ≥ 0 and Eq. (4.6)
asserts that ∫ dψ̂ Qψ̂ = Πn.

It is this so-called uniform POVM that we will use to solve the pure-state estimation problem!

4.3 Pure state estimation

We will now show that the uniform POVM solves the pure state estimation problem. Recall that
we are given n copies of some ∣ψ⟩⊗n. To obtain a good estimate, we want to measure the uniform
POVM (4.7).

How do we quantify the goodness of this strategy? There are several options, but the one
that is most natural in the present context is to consider the fidelity squared, ∣⟨ψ∣ψ̂⟩∣2, between
estimate and true state. The fidelity has a good operational meaning: In Problem 1.4, you
showed that two quantum states with fidelity close to one are almost indistinguishable by any
possible measurement.

We will in fact look at a slightly more general figure of merit, namely ∣⟨ψ∣ψ̂⟩∣2k for some
arbitrary integer k ≥ 1, since this is just as easy and we will use it next week.

Remark. If k > 1 then this is a more stringent figure of merit since unequal states become more
orthogonal in this way: ∣⟨ψ∣ψ̂⟩∣2k < ∣⟨ψ∣ψ̂⟩∣2.

Thus, suppose that ψ is some fixed unknown pure state. If we measure the uniform POVM
{Qψ̂} on ψ⊗n, then the expected value of ∣⟨ψ∣ψ̂⟩∣2k is given by (the average is over the measurement
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outcome ψ̂, which is random and distributed according to Eq. (4.1)):

E [∣⟨ψ∣ψ̂⟩∣2k] = ∫ dψ̂ ⟨ψ⊗n∣Qψ̂ ∣ψ
⊗n⟩ ∣⟨ψ∣ψ̂⟩∣2k

= (n + d − 1
n

)∫ dψ̂ ∣⟨ψ∣ψ̂⟩∣2(k+n)

= (n + d − 1
n

) ⟨ψ⊗(k+n)∣ (∫ dψ̂ ∣ψ̂⟩⊗(k+n) ⟨ψ̂∣⊗(k+n)) ∣ψ⊗(k+n)⟩

= (n + d − 1
n

)(n + k + d − 1
n + k )

−1
⟨ψ⊗(k+n)∣Πn+k∣ψ⊗(k+n)⟩

= (n + d − 1
n

)(n + k + d − 1
n + k )

−1

= (n + d − 1)!
n!

(n + k)!
(n + k + d − 1)! =

(n + d − 1) . . . (n + 1)
(n + k + d − 1) . . . (n + k + 1)

≥ ( n + 1
n + k + 1)

d−1
= (1 − k

n + k + 1)
d−1

≥ 1 − k(d − 1)
n + k + 1 ≥ 1 −

kd

n
.

(4.8)

The first equality holds because ⟨ψ⊗n∣Qψ̂ ∣ψ
⊗n⟩ is the probability density of the measurement

outcome ψ̂, as we know from Eq. (4.2). For the second equality, we plugged in the definition of
the POVM element Eq. (4.7). The third is just some simple manipulation using linearity of the
integral, and the fourth follows by plugging in the formula for the projector onto the symmetric
subspace Symn+k(Cd). The rest are some simple inequalities that I explained in class.

Success! We have shown that the uniform POVM (4.7) gives us a very good estimate of ∣ψ⟩
as soon as n≫ d (if we measure its goodness by the fidelity squared, corresponding to k = 1).

On Problem 1.4, you studied the trace distance T (ψ, ψ̂) and showed that

T (ψ, ψ̂) =
√

1 − ∣⟨ψ∣ψ̂⟩∣2. (4.9)

Thus, the average error as quantified by the trace distance is

E[T (ψ, ψ̂)] = E[
√

1 − ∣⟨ψ∣ψ̂⟩∣2] ≤
√
E[1 − ∣⟨ψ∣ψ̂⟩∣2] ≤

√
d

n
.

This is quite intuitive! On the one hand, ∣ψ⟩ has O(d) degrees of freedoms (more precisely,
2(d − 1) real degrees of freedom, if we fix the norm to one and ignore the phase), so we should
expect to need a number of copies n that scales with d. On the other hand, we might expect
that using n copies we can estimate each component to precision O(1/√n). (In fact, even if we
were doing independent measurements on each copy. . . )

Remark. Later in this course we will learn how to go beyond the symmetric subspace and solve
the state estimation problem (also known as quantum state tomography) for general (i.e., not
necessarily pure) quantum states (Lecture 13).
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Last time we discussed the problem of estimating an unknown pure state ψ = ∣ψ⟩ ⟨ψ∣ given n
copies, i.e., ψ⊗n = ∣ψ⟩⊗n ⟨ψ∣⊗n. Our main approach was to focus on the permutation symmetry of
∣ψ⟩⊗n, and we discussed that the set of all such tensor powers formed an ‘overcomplete basis’ of
the symmetric subspace Symn(Cd). More formally, we asserted the following formula (Eq. (4.6):

Πn = (
n + d − 1

n
)∫ dψ ∣ψ⟩⊗n ⟨ψ∣⊗n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Π′n

(5.1)

and we used this formula to show that the uniform POVM {Qψ̂ ∶= (
n+d−1
n
) ∣ψ̂⟩⊗n ⟨ψ̂∣⊗n} provides

a good solution to the quantum state estimation problem.
Yet, we still need to prove Eq. (5.1). One way of going about this would be to “simply perform

the integration”. See, e.g., Harrow (2013) for this approach. We will proceed differently and show
that the symmetries of Π′n alone imply that Πn = Π′n. What is this symmetry? Since the integral
is invariant under substituting ψ ↦ UψU † (equivalently, ∣ψ⟩↦ U ∣ψ⟩), we obtain that

U⊗nΠ′n(U †)⊗n = (n + d − 1
n

)∫ dψ(U ∣ψ⟩)⊗n(⟨ψ∣U †)⊗n = (n + d − 1
n

)∫ dψ ∣ψ⟩⊗n ⟨ψ∣⊗n = Π′n.
(5.2)

To see that this symmetry indeed suffices will take us some work, since we will have to develop
the required mathematics. But on the flipside we will get quite a bit of additional payoff that we
will be able to leverage throughout the remainder of this course!

A good reference for the following material is Part 1 in the book by Serre (2012).

5.1 Groups and Representations

Recall that a group G is given by a set together with a multiplication (denoted ‘⋅’ but usually
omitted), an identity element (‘1’), and inverses (‘g−1’).

Example (Symmetric group). The symmetric group Sn is the group of permutations on {1, . . . , n}
(i.e., bijective functions from this set to itself). We already introduced this group last time. The
multiplication law is given by the composition of functions, i.e., given two permutations π and
and τ , we define πτ by (πτ)(x) ∶= π(τ(x)) for x ∈ {1, . . . , n}. The identity element is the identity
map and inverses are given by the usual inverse of functions.

The symmetric group Sn is generated by the swaps (or flips) x↔ y for x ≠ y. These are the
permutations that interchange two elements (x and y), while leaving all other elements fixed.

For example, the symmetric group S3 has 3! = 6 elements: The identity map, the three swaps
(1↔ 2, 1↔ 3, 2↔ 3), and two cyclic permutations, denoted 1→ 2→ 3 and 1← 2← 3 (each of
which can be written as the product of two swaps).

Example (Unitary and special unitary group). The unitary group U(d) consists of the unitary
d×d-matrices. Multiplication, identity, and inverse are matrix multiplication, the identity matrix,
and the matrix inverse.
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The unitary group contains a useful subgroup, the so-called special unitary group SU(d) =
{U ∈ U(d)∣det(U) = 1}. Note that any matrix U ∈ U(d) can be written as the product of a scalar
(multiple of the identity matrix) with a matrix in SU(d):

U = det(U)1/d U

det(U)1/d
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈SU(d)

,

A unitary representation of a group G consists of two pieces of data:

• A Hilbert space H, and

• unitary operators {Rg}g∈G on H

such that

Rgh = RgRh and R1 = IH

(In fact, the right-hand side requirement is redundant: Since 1 ⋅1 = 1, R2
1 = R1, so R1 = IH.) These

requirements imply that Rg−1 = R−1g = R
†
g. We will always assume that H is finite-dimensional.

As long as it is clear from the context what operators we are talking about, we will usually
speak of “the representation H” instead of “the unitary representation given by H and operators
{Rg}”, since the latter is somewhat of a mouthful. We will also say that the group G “acts on” H.

Example 5.1. As discussed in Lecture 4, the Hilbert space (Cd)⊗n is a representation of the
symmetric group Sn, with operators

Rπ ∣ψ1⟩⊗ . . .⊗ ∣ψn⟩ = ∣ψπ−1(1)⟩⊗ . . .⊗ ∣ψπ−1(n)⟩ .

In fact, it is also a representation of the unitary group U(d), with operators

TU = U⊗n.

Importantly, both actions commute, that is

[Rπ, TU ] = 0 (5.3)

for all π ∈ Sn and U ∈ U(d). This is clear intuitively and is be verified by a short calculation:

U⊗nRπ ∣ψ1⟩⊗ . . .⊗ ∣ψn⟩ = (U ∣ψπ−1(1)⟩)⊗ . . .⊗ (U ∣ψπ−1(n)⟩)
= Rπ (U ∣ψ1⟩)⊗ . . .⊗ (U ∣ψn⟩) = RπU⊗n ∣ψ1⟩⊗ . . .⊗ ∣ψn⟩ .

The Hilbert space (Cd)⊗n is actually a rather complicated representation that we still need
to understand better, so let’s look at some other, simpler examples.

Example 5.2. Let’s study some representations of S3. Like any group, S3 has a one-dimensional
trivial representation:

H = C ∣0⟩ , Rπ ∣0⟩ = ∣0⟩ (∀π)

This is a maximally boring representation insofar as any group element π acts by the (1 × 1)
identity matrix.
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More interesting is the sign representation, which is also one-dimensional:

H = C ∣0⟩ , Rπ ∣0⟩ = sign(π) ∣0⟩ (∀π)

Here, we use the sign of a permutation, which is uniquely defined by the following two properties:
sign(τ) = −1 for any swap τ = x ↔ y, and sign(ππ′) = sign(π) sign(π′). In other words,
sign(π) = +1 if π can be written as a product of an even number of swaps, otherwise sign(π) = −1.
(This is well-defined.) For example, R1↔2 = −I, but R1→2→3 = I.

Lastly, we consider a representation of dimension larger than one:

H = C3 = {α ∣1⟩ + β ∣2⟩ + β ∣3⟩} = {
⎛
⎜
⎝

α
β
γ

⎞
⎟
⎠
},Rπ ∣j⟩ = ∣π(j)⟩ . (5.4)

Thus, Rπ permutes the coordinates of a three-dimensional vector according to the permutation π.
For example,

R2↔3

⎛
⎜
⎝

α
β
γ

⎞
⎟
⎠
=
⎛
⎜
⎝

α
γ
β

⎞
⎟
⎠

5.2 Decomposing representations

A useful way to analyze a representation is to decompose it into smaller building blocks. For
this, we need a new notion: Let us H̃ ⊆H an invariant subspace if

∣ψ⟩ ∈ H̃ ⇒ Rg ∣ψ⟩ ∈ H̃

(short: RgH̃ ⊆ H̃) for all g ∈ G. Any representation has two invariant subspaces which are not
particularly interesting: {0} and H itself. We shall say that H is an irreducible representation
(or “irrep”) if these are the only invariant subspaces (and H ≠ {0}). In this case, H cannot be
decomposed into an interesting way.

Whenever H̃ ⊆H is an invariant subspace, so is the orthogonal complement H̃⊥! Indeed, if
∣ϕ⟩ ∈ H̃⊥ then, for all ∣ψ⟩ ∈ H̃,

⟨ψ∣Rg ∣ϕ⟩ = ⟨R†
gψ∣ϕ⟩ = ⟨Rg−1ψ∣ϕ⟩ = 0,

since Rg−1 ∣ψ⟩ ∈ H̃; this shows that Rg ∣ϕ⟩ ∈ H̃⊥. As a consequence, the operators Rg are block
diagonal with respect to the decomposition H = H̃⊕ H̃⊥, i.e.,

Rg =∶ R̃g ⊕ R̂g = (
R̃g 0

0 R̂g
) , (5.5)

where R̃g denotes the restriction of Rg to the subspace H̃ and R̂g the restriction to H̃⊥. Note
that the operators {R̃g} turn H̃ into a representation of G; likewise for {R̂g} and H̃⊥. Thus we
have successfully decomposed the given representation H into two “smaller” representations H̃
and H̃⊥.

Remark. We can also go the other way around: Given two representations H̃ and Ĥ of G,
we can turn the direct sum H ∶= H̃⊕ Ĥ into a representation of G: simply use Eq. (5.5) as the
definition of Rg.

37



When have we made progress? Clearly, the decomposition (5.5) is only interesting if both
H̃ ≠ {0} and H̃⊥ ≠ {0}. In this case, we can apply the same reasoning separately to H̃ and H̃⊥
and continue this process until we arrive at a decomposition

H =H1 ⊕H2 ⊕ . . .⊕Hm (5.6)

that cannot be refined further, i.e., where the Hj are irreducible. Thus, we have decomposed
H into a direct sum of irreducible representations of G. Note that, by construction, the Hj are
orthogonal to each other.

Example 5.3. Any one-dimensional representation is irreducible (simply for the reason that a
one-dimensional space cannot be decomposed in a nontrivial way). In particular, the trivial and
the sign representation in Example 5.2 are irreducible.

On the other hand, the three-dimensional representation (5.4) is not irreducible, since

H̃ = {{α ∣1⟩ + β ∣2⟩ + β ∣3⟩}∣α + β + γ = 0} = {
⎛
⎜
⎝

α
β
γ

⎞
⎟
⎠
∣α + β + γ = 0},

is a two-dimensional invariant subspace. In Problem 3.1, you will show that it is irreducible. Its
orthogonal complement is given by

H̃⊥ = C(∣1⟩ + ∣2⟩ + ∣3⟩) = {
⎛
⎜
⎝

α
α
α

⎞
⎟
⎠
};

it is one-dimensional and so irreducible. Note that Rπ acts just like in the trivial representation:
Rπ(∣1⟩ + ∣2⟩ + ∣3⟩) = ∣1⟩ + ∣2⟩ + ∣3⟩ for all π ∈ S3.

Example 5.4 (Symmetric subspace). How about the symmetric subspace Symn(Cd) ⊆ (Cd)⊗n.
As discussed in Example 5.1, we can think of (Cd)⊗n as a representation of both Sn and U(d).
From the perspective of Sn, Symn(Cd) is clearly an invariant subspace. However, any subspace
W ⊆ Symn(Cd) is also an invariant subspace, since Rπ ∣ϕ⟩ = ∣ϕ⟩ for any ∣ϕ⟩ ∈ Symn(Cd). So
Symn(Cd) is not irreducible.

From the perspective of U(d), Symn(Cd) is also an invariant subspace. This follows at once
from Eq. (5.3). Indeed, if ∣Φ⟩ ∈ Symn(Cd) then Rπ(U⊗n ∣Φ⟩) = U⊗n(Rπ ∣Φ⟩) = U⊗n ∣Φ⟩ and so
U⊗n ∣Φ⟩ ∈ Symn(Cd). Moreover, it is true that Symn(Cd) is irreducible! We will prove this
carefully tomorrow in Lecture 6.

An important part of representation theory is to classify all irreducible representations of
a given group G. This raises a question: How can we compare different representations? (In
particular, when can we say that two representations are “the same”?) For this we use the notion
of an intertwiner, which we discuss in the following section.

5.3 Intertwiners and Schur’s lemma

An intertwiner J ∶H →H′ is a map such that

JRg = R′gJ

for all g ∈ G (hence the name).
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Now suppose that the intertwiner is invertible, i.e., an isomorphism. In this case,

JRgJ
−1 = R′g

for all g ∈ G – thus the two representations only differ by an overall isomorphism or “change of
coordinates”. In this case, we shall say that the two representations H and H′ are equivalent. We
will denote this by the notation H ≅H′ and Rg ≅ R′g (the isomorphism is understood to be the
same). We note that the intertwiner can always be chosen to be a unitary operator.

Remark 5.5. Given two representations H̃ and Ĥ of G, we can also the tensor product H ∶= H̃⊗Ĥ
into a representation of G: Simply define Rg ∶= R̃g ⊗ R̂g. In particular we may apply this in the
case that Ĥ = Cm is a trivial representation of dimension m (i.e., R̂g = Im). It is instructive to
observe that

Ĥ⊗Cm ≅ Ĥ⊕ . . .⊕ Ĥ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m times

,

R̃g ⊗ Im ≅
⎛
⎜⎜⎜⎜
⎝

R̃g
R̃g

⋱
R̃g

⎞
⎟⎟⎟⎟
⎠
.

An important tool for us is the following mathematical result, known as Schur’s lemma.

Lemma 5.6 (Schur). Let J ∶H →H′ be an intertwiner.

(i) If H and H′ are irreps, then either J is invertible (hence H ≅H′) or J = 0.

(ii) If H =H′ and Rg = R′g then J ∝ IH (i.e., any self-intertwiner is necessarily a multiple of
the identity operator).

Proof. (i) Suppose that J ≠ 0, so we want to show that J is invertible. Both ker(J) and
ran(J) are invariant subspaces, as is readily verified. Since H is irreducible, this means that
either ker(J) = {0} or ker(J) =H. We must have the former case, since otherwise J = 0 –
so J is injective. Similarly, since H′ is irreducible, we have ran(J) = {0} or ran(J) = H′.
In the former case, J = 0, so we must be in the latter case – thus, J is also surjective. Thus,
J is invertible.

(ii) Any operator J ∶H → H on a complex vector space has an eigenvalue, say λ ∈ C. Thus,
ker(J − λ) ≠ {0}. But if J is an intertwiner then so is J − λ (here we use that Rg = R′g).
Thus ker(J − λ) is a nonzero invariant subspace. Since H is irreducible, we must have that
ker(J − λ) =H, so J = λIH.

Remark. In part (i) of Schur’s lemma, J will in fact be proportional to a unitary. You will show
this in Problem 3.2. So two irreducible representations are equivalent if and only if there exists a
unitary intertwiner between them. (This is true even if the representations are not irreducible.)

Why do we care about all this? Remember that we wanted to prove Eq. (5.1). In Eq. (5.2),
we showed that U⊗nΠ′n = Π′nU⊗n. But this means that Π′n is an intertwiner with respect to
the action of U(d) on (Cd)⊗n. Since Π′n is supported only on the symmetric subspace, which
we just claimed is irreducible (Example 5.4), Schur’s lemma (Lemma 5.6) readily implies hat
Π′n ∝ Πn, and one can easily figure out that the proportionality is one. I sketched this in class
but postponed a more careful discussion to tomorrow (see Lecture 6).
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In yesterday’s introduction to representation theory we asserted that the symmetric subspace
Symn(Cd) is an irreducible representation of U(d) (equivalently, of SU(d)). We sketched how
this irreducibility, together with Schur’s lemma, implied the important integral formula (4.6) for
the projector onto the symmetric subspace. Today, we will spell out this argument in greater
detail, and then we will prove that the symmetric subspace is indeed irreducible (for d = 2).

6.1 Proof of the integral formula

Assuming that the symmetric subspace is irreducible, we will now show that

Πn = (
n + d − 1

n
)∫ dψ ∣ψ⟩⊗n ⟨ψ∣⊗n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Π′n

.

Note that both the left and the right-hand side are operators on (Cd)⊗n. Let us abbreviate
H ∶= Symn(Cd), so that (Cd)⊗n =H⊕H⊥, and block-decompose all operators accordingly. First,
since Πn is (by definition) the orthogonal projection onto the symmetric subspace, we have that

Πn = (
IH 0
0 0

) ,

where (as always) IH is the identity operator on H.
Second, since every ∣ψ⟩⊗n is in the symmetric subspace, the operator Π′n maps any vector

into the symmetric subspace. Moreover, any vector orthogonal to the symmetric subspace is
mapped to zero by Π′n. Thus:

Π′n = (
J 0
0 0
) ,

where J ∶H →H is some operator on the symmetric subspace (that we do not know yet).
Lastly, since both H and H⊥ are invariant subspaces for the representation of U(d), which is

given by TU = U⊗n, we must have that

U⊗n = (T
H
U 0

0 TH
⊥

U

) . (6.1)

where THU denotes the restriction of U⊗n to the symmetric subspace and TH
⊥

U the restriction to
its orthogonal complement.

Now, recall from Eq. (5.2) that the unitary invariance of the measure dψ implies that
U⊗nΠ′n = Π′n(U †)⊗n. Using the block diagonal form of the two operators, this implies that

THU J = JTHU .

Thus, J is an intertwiner with respect to the group action of U(d) on the symmetric subspace
H = Symn(Cd)! By part (ii) of Schur’s lemma, it follows immediately that J must be proportional
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to IH, i.e., there exists λ ∈ C such that J = λIH and therefore Π′n = λΠn. To see that λ = 1, let us
compare the traces of the two operators:

tr[Π′n] = tr [(
n + d − 1

n
)∫ dψ ∣ψ⟩⊗n ⟨ψ∣⊗n] = (n + d − 1

n
)∫ dψ tr [∣ψ⟩⊗n ⟨ψ∣⊗n]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=⟨ψ⊗n∣ψ⊗n⟩=1

= (n + d − 1
n

),

tr[Πn] = dimSymn(Cd) = (n + d − 1
n

).

In the first calculation we used that dψ is a probability measure, so that ∫ dψ = 1. In the second
calculation we used that the trace of a projector is equal to the dimension of the space that it
projects on (this is also manifest from the block decomposition for Πn that we saw above). Thus,
tr[Π′n] = tr[λΠn] forces that λ = 1, concluding the proof.

Remark. Recall that Symn(Cd) is an invariant subspace not only for U(d) but also for Sn. This
means that we have both

U⊗n = (T
H
U 0

0 TH
⊥

U

) , Rπ = (
RHπ 0

0 RH
⊥

π
) .

Since [TU ,Rπ] = 0, it follows that [THU ,RHπ ] = 0 for every U ∈ U(d) and π ∈ Sn, i.e.,

THU R
H
π = RHπ THU .

Thus, the operators Rπ are intertwiners if we think of H as a representation of U(d), and vice
versa! By part (ii) of Schur’s lemma, the former implies that each Rπ ∝ IH. But indeed, we
know that (by definition) Rπ acts trivially on the symmetric subspace, so Rπ = IH, so this is in
complete agreement with what we know.

How about the latter, i.e., the statement that the TU are intertwiners if we think of H as
a representation of Sn? Clearly it is not true that the TU are proportional to IH! But indeed,
Schur’s lemma is not applicable in this situation, since H is not irreducible as a representation of
Sn! In fact, H decomposes into one-dimensional trivial representations of Sn, so Schur’s lemma
is maximally uninformative in this situation.

6.2 Proof of irreducibility of the symmetric subspace

We will now prove that Symn(Cd) is an irreducible representation of U(2) as well as of SU(2).
For simplicity, we restrict to the important case that d = 2 (qubits). However, the proof strategy
that we will use generalizes immediately, and it is a pleasant exercise to work out the details.

To start, recall from Lecture 4 that Symn(C2) has the following orthonormal basis:

∣ωn,0⟩ = ∣0 . . .0²
n times

⟩ = ∣0⟩⊗n

∣ωn−1,1⟩ =
1

n
(∣ 0 . . .0
²

n − 1 times

1⟩ + ∣ 0 . . .0
²

n − 2 times

10⟩ + ⋅ ⋅ ⋅ + ∣1 0 . . .0
²

n − 1 times

⟩)

⋮
∣ωm,n−m⟩∝ ∣ 0 . . .0²

m times

1 . . .1
²

n −m times

⟩ + permutations

⋮
∣ω0,n⟩ = ∣1 . . .1²

n times

⟩ = ∣1⟩⊗n

(6.2)

42



Thus, the m-th basis vector ∣ωm,n−m⟩ is given by a uniform superposition of all bitstrings with m
zeros and n −m ones (the numbers m and n −m are sometimes called the occupation numbers).
Since m ∈ {0, . . . , n}, we found n + 1 basis vectors, which agrees with the binomial coefficient
(n+2−1

n
) as it should.

To show that Symn(C2) is irreducible, our strategy will be at follows: We would like to take
an arbitrary invariant subspace H̃ ≠ {0} and show (i) that it must contain at least one of the
basis vectors ∣ωm,n−m⟩, and (ii) that if it contains one it must in fact contain all of the basis
vectors, so that H̃ = Symn(C2). To make this work, we will identify suitable operators that
naturally identify and transition between the basis vectors. For this, we define for every operator
M on C2 the following operator on (C2)⊗n:

M̃ =M ⊗ I ⊗ . . .⊗ I + ⋅ ⋅ ⋅ + I ⊗ . . .⊗ I ⊗M =∶
n

∑
k=1

Mk.

Why is this a useful definition?

• Consider, e.g., M = Z = ( 1 0
0 −1 ). Then Z̃ ∣i1 . . . in⟩ = (#0’s −#1’s) ∣i1 . . . in⟩, where #0’s

denotes the number of zeros in the bitstring i1 . . . in and #1’s the number of ones. As a
consequence,

Z̃ ∣ωm,n−m⟩ = (m − (n −m)) ∣ωm,n−m⟩ = (2m − n) ∣ωm,n−m⟩ .

This means that each basis vector ∣ωm,n−m⟩ is an eigenvector of Z̃. Moreover, the eigenvalues
2m − n are all distinct; as m ∈ {0,1, . . . , n}, they range in {−n,−n + 2, . . . , n − 2, n}. In
particular, the Z̃ preserve the symmetric subspace and we can recover the ∣ωm,n−m⟩ uniquely
(up to phase) as the unit eigenvectors of Z̃.

• Now consider M+ = ∣0⟩ ⟨1∣ = ( 0 1
0 0 ). Note that M̃+ acts on a computational basis vector

∣i1 . . . in⟩ by inspecting each bit ik and, if ik = 1, replacing it by 0. E.g.,

M̃+ ∣011⟩ = (M+ ⊗ I ⊗ I) ∣011⟩ + (I ⊗M+ ⊗ I) ∣011⟩ + (I ⊗ I ⊗M+) ∣011⟩ = ∣001⟩ + ∣010⟩ .

As a consequence, it is not hard to verify that, for m < n,

M̃+ ∣ωm,n−m⟩∝ ∣ωm+1,n−(m+1)⟩

with a nonzero proportionality constant (unless m = n, in which case the basis vector is
annihilated).

• Similarly, if we define M− = ∣1⟩ ⟨0∣ = ( 0 0
1 0 ) then

M̃− ∣ωm,n−m⟩∝ ∣ωm−1,n−(m−1)⟩ (6.3)

with nonzero proportionality constant (unless m = 0, in which case the basis vector is
annihilated).

Thus we have found three operators, Z̃, M̃+, and M̃−, that allow us to identify and transition
between the basis vectors ∣ωm,n−m⟩.

Next, we would like to express these operators in terms of the data of the representation and
show that they preserve any invariant subspace for the U(2)-action. This requires a little detour.
Recall that

U(d) = {eiM ∣M =M †}.

Here, we have used the matrix exponential, which for an arbitrary complex matrix A can be
defined via the usual power series eA ∶= ∑∞k=0 A

k

k! . The matrix exponential has a number of useful
properties:

43



(i) (eA)† = eA†
.

(ii) eA⊗I = eA ⊗ I.

(iii) If [A,B] = 0 (!) then eAeB = eA+B.

(iv) UeAU † = eUAU†
.

(v) det(eA) = etr[A].

All but the last can be directly verified from the power series. If A is Hermitian, with spectral
decomposition A = ∑i ai ∣ϕi⟩ ⟨ϕi∣, then we can compute its expoenntial simply by exponentiating
each eigenvalue, i.e., eA = ∑i eai ∣ϕi⟩ ⟨ϕi∣. So at least in this case, the last property is also easy to
see. This is makes it clear that U(d) = {eiM ∣M =M †}, as we claimed above.

Let us now calculate the exponential of the operators M̃ :

eiM̃ = ei∑kMk = eiM1 . . . eiMn

= (eiM ⊗ I ⊗ . . .⊗ I) . . . (I ⊗ . . .⊗ I ⊗ eiM) = (eiM ⊗ . . .⊗ eiM) = (eiM)⊗n

(in the second step we used property (iii) and in the third we used property (ii)).
Now assume that M =M †. In this case, U = eiM is unitary and

U⊗n = eiM̃ . (6.4)

This elucidates the role of the operators M̃ – they exponentiate to the group action! Another
way to say this is as follows: Consider Ut = eitM , which is a path of unitaries parametrized by
t ∈ R. If we take the derivative at t = 0 then

M = −i∂t=0[eitM ] = −i∂t=0[Ut], (6.5)

so we can think of M as a tangent vector of the path Ut at U0 = I, as in the following picture:

Similarly, using Eq. (6.4),

M̃ = −i∂t=0[eitM̃ ] = −i∂t=0[(eitM)⊗n] = −i∂t=0[U⊗nt ].

Remark. Mathematically, what we have done is to pass to the Lie algebra of the Lie group
U(d), which can be defined as the tangent space of the Lie group at the identify element (see
Eq. (6.5)). Concretely, the Lie algebra of U(d) consists of the anti-Hermitian matrices iM . And
iM̃ is the Lie algebra representation of iM , defined by taking the derivative of the group action.

Working with the operators M and M̃ (i.e., working with the Lie algebra instead of the Lie
group) allows us to convert everything into a “linear algebra problem”.

Now let H̃ ⊆ Symn(C2) be an invariant subspace for U(2). We claim that

M̃H̃ ⊆ H̃ (6.6)
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To see this, let us first assume that M =M †. Then, for every ∣Ψ⟩ ∈ H̃, we have that

M̃ ∣Ψ⟩ = −i∂t=0[eitM̃ ] ∣Ψ⟩ = −i∂t=0[ eitM̃ ∣Ψ⟩
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

(eitM )⊗n∣Ψ⟩∈H̃

].

In the underbraced statement we used Eq. (6.4) and that H̃ is an invariant subspace for U(2),
so that (eitM)⊗n ∣Ψ⟩ ∈ H̃. But (finite-dimensional) vector subspaces such as H̃ are closed, so if
we take the limit of a function with values in H̃ (here, the difference quotients that converge
to the derivative) then the result (here, the derivative) must again be in H̃. Thus, M̃ ∣Ψ⟩ ∈ H̃,
which establishes Eq. (6.6) for Hermitian M . If M is not Hermitian, we can write it in the form
M =M ′ + iM ′′ with M ′ and M ′′ Hemitian; then M̃ = M̃ ′ + iM̃ ′′ and so Eq. (6.6) follows from
what we just showed.

We are finally in a position to prove that the symmetric subspace is irreducible following the
strategy laid out above. Let us assume that H̃ ⊆ Symn(C2) is an invariant subspace. First, note
that Z̃H̃ ⊆ H̃ by Eq. (6.6). Thus we can diagonalize the Hermitian operator Z̃ on the subspace
H̃. In particular, H̃ is spanned by eigenvectors of Z̃. We know from the beginning of this section
that any eigenvector of Z̃ on the symmetric subspace is a multiple of some ∣ωm,n−m⟩. Thus, if
H̃ ≠ {0} then it contains at least one of the basis vectors ∣ωm,n−m⟩. But Eq. (6.6) also tells us
that M̃±H̃ ⊆ H̃. Since we can obtain any other basis vector from a single ∣ωm,n−m⟩ by acting with
M̃+ and M̃−, it follows that if H̃ ≠ {0} then H̃ = Symn(C2). This concludes the proof that the
symmetric subspace is irreducible when regarded as a representation of the group U(2).

It is irreducible even when we restrict to SU(2). Indeed, note that any unitary U ∈ U(2) can
be written in the form

U =
√
detU
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
=∶λ

U√
detU
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶U ′

(take any complex square root), where λ ∈ U(1) and U ′ ∈ SU(2). Since U acts by U⊗n = λn(U ′)⊗n,
it is then clear that a subspace is irreducible for U(2) if and only if it is irreducible for SU(2).
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Symmetry and Quantum Information February 26, 2018

Representation theory of SU(2), density operators, purification
Lecture 7 Michael Walter, University of Amsterdam

Last week, we learned the basic concepts of group representation theory (Lecture 5) and
we proved that the symmetric subspaces are irreducible representations of SU(2) (Lecture 6).
Today, we will discuss how the symmetric subspaces fit in the representation theory of SU(2)
more generally, and we will discuss how to decompose an arbitrary representation of SU(2)
into irreducibles. In the second half of the lecture, we will switch gears and introduce density
operators, which is a generalization of the notion of a quantum state.

7.1 Representation theory of SU(2)
We start by introducing some notation. For reasons that will become clear soon, it will be
convenient to use k instead of n. So we will write Symk(C2) for the symmetric subspace of the
k-th tensor power. Let us also denote by T

(k)
U the restriction of TU = U⊗k to the symmetric

subspace. That is, T (k)U is given by the same formula U⊗k, but we only plug in vectors in
the symmetric subspace and remember that the result will automatically by in the symmetric
subspace. For k = 0, we define Sym0(C2) = C as the trivial representation, with T (0)U = I. Thus,
the Hilbert space Symk(C2) together with the operators {T (k)U }U∈SU(2) defines a representation
of SU(2), and it is this representation that we proved to be irreducible in Lecture 6.

A basic question in the representation theory of any group is to ask about the possible
irreducible representations, up to equivalence. For the group SU(2), one can show that every
irreducible representation is equivalent to a symmetric subspace (we will not prove this fact).
That is, if H is an arbitrary irreducible representation of SU(2), with corresponding operators
{RU}, then there exists k ≥ 0 and a unitary intertwiner J ∶H → Symk(C2) such that

JRUJ
† = T (k)U ∀U ∈ SU(2).

We will abbreviate this situation by the notation H ≅ Symk(C2) and RU ≅ T (k)U introduced last
lecture. Moreover, the symmetric subspaces are inequivalent for k ≠ l, i.e., Symk(C2) /≅ Syml(C2).
This follows directly from the fact that dimSymk(C2) = k + 1, so there cannot be a unitary map
between different symmetric subspaces.

To summarize, any irreducible representation H of SU(2) is equivalent to exactly one of the
symmetric subspaces Symk(C2), up to equivalence, and can therefore by labeled by an integer k.
We can determine k directly from the dimension formula as k = dimH − 1. You may know from
your quantum mechanics class that the irreducible representations can also be labeled by their
spin j, which is a half-integer. As you might expect, the connection is precisely that j = k/2.

Let us discuss some examples. A good source of SU(2)-representations are the various tensor
powers of C2, i.e., (C2)⊗n, so this is what we shall consider. For n = 0, we have the trivial
representation

(C2)⊗0 = Sym0(C2),

and for n = 1, we have

(C2)⊗1 = Sym1(C2) = C2
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so this is again irreducible (and not very interesting). The first interesting examples is n = 2,
since here we know that (C2)⊗2 is not irreducible. In fact:

(C2)⊗2 = C⊗C = Sym2(C2)
⊥
⊕ C ∣Ψ−⟩ ,

where ∣Ψ−⟩ =
√

1
2 (∣10⟩ − ∣01⟩) is the singlet state. Both summands are the irreducible – the

former because it is a symmetric subspace, and the latter since it is a one-dimensional invariant
subspace. Which symmetric subspace is the latter isomorphic to? Clearly, this must be the
one-dimensional Sym0(C2). To see this more concretely, recall that in Problem 2.1 you showed
that

(U ⊗U) ∣Ψ−⟩ = det(U) ∣Ψ−⟩

for all unitaries U . If U ∈ SU(2) then det(U) = 1, so ∣Ψ−⟩ spans indeed a trivial representation.
We can summarize this as follows:

C2 ⊗C2 ≅ Sym2(C2)⊕ Sym0(C2). (7.1)

Is there a systematic way of decomposing higher tensor powers (C2)⊗n for n > 2? We will discuss
this next.

7.2 Decomposing representations of SU(2)
In fact, let us consider a more general question: Suppose we are given an arbitrary SU(2)-
representation H, with operators {RU}U∈SU(2). We know that we can always decompose a
representation into irreducibles, so that

H ≅ Symk1(C2)⊕ Symk2(C2)⊕ . . .⊕ Symkm(C2),

but how can we determine the numbers k1, . . . , km that appear? In other words, how can we
figure out how many times a certain irreducible representation Symk(C2) appears in H? We can
solve this by a similar procedure as we used last time in class. Start by defining the operator

rZ ∶= −i∂s=0 [ReisZ ] . (7.2)

Note that eisZ = ( eis 0
0 e−is ) ∈ SU(2), so this definition makes sense assuming RU is differentiable

as a function of U . In general, the operator rZ will always be Hermitian. (As mentioned in the
previous lecture, this definition can be understood more conceptually in terms of the action of
the Lie algebra of SU(2).)

For example, if H = (C2)⊗n with RU = U⊗n, then rZ = Z̃ = Z ⊗ I ⊗ . . .⊗ I + ⋅ ⋅ ⋅ + I ⊗ . . .⊗ I ⊗Z
in the notation of yesterday’s lecture, which was one of the ingredients for proving that the
symmetric subspaces are irreducible. In particular, we proved that the operator Z̃ preserves the
symmetric subspace. Let us denote its restriction by t(k)Z . Yesterday, we proved that each of the
basis vectors ∣ωm,k−m⟩ for m = 0, . . . , k are eigenvectors of t(k)Z , with associated eigenvalue 2m− k.
Thus, the operator t(k)Z has eigenvalues {−k,−k + 2, . . . , k − 2, k}, each with multiplicity one.

Now assume that H is irreducible and equivalent to some Symk(C2) by a unitary intertwiner
J ∶H → Symk(C2). Then,

JrZJ
† = −i∂s=0 [JReisZJ†] = −i∂s=0 [T (k)eisZ

] = t(k)Z ,

48



and so we see that rZ has likewise eigenvalues {−k,−k + 2, . . . , k − 2, k}, each with multiplicity
one.

How about the general case, where

H ≅ Symk1(C2)⊕ Symk2(C2)⊕ . . .⊕ Symkm(C2)

? Here we have a unitary intertwiner J such that

JRUJ
† =

⎛
⎜⎜⎜⎜⎜
⎝

T
(k1)
U

T
(k2)
U

⋱
T
(km)
U

⎞
⎟⎟⎟⎟⎟
⎠

and hence

JrZJ
† =

⎛
⎜⎜⎜⎜⎜
⎝

t
(k1)
Z

t
(k2)
Z

⋱
t
(km)
Z

⎞
⎟⎟⎟⎟⎟
⎠

for the same reason as above. It follows that the eigenvalue spectrum of rZ is given by the
multiset

{−k1,−k1 + 2, . . . , k1 − 2, k1} ⊔ {−k2,−k2 + 2, . . . , k2 − 2, k2} ⊔ ⋅ ⋅ ⋅ ⊔ {−km,−km + 2, . . . , km − 2, km}.

It is not hard to see that one can inductively reverse-engineer the numbers k1, k2, . . . , km from
this multiset: Start by taking the largest number; it must be one of the ki’s. Remove the
corresponding {−ki,−ki + 2, . . . , ki − 2, ki} from the set, and repeat the procedure. Let us discuss
some examples.

First, we can use this to reprove the decomposition in Eq. (7.1). Here, H = C2 ⊗ C2 and
rZ = Z̃ = Z ⊗ I + I ⊗Z as explained above. Thus, rZ is diagonal in the computational basis and
the eigenvalues of rZ are

{2,0,0,−2} = {2,0,−2} ⊔ {0}.

This decomposition makes it clear that

(C2)⊗2 = C2 ⊗C2 ≅ Sym2(C2)⊕ Sym0(C2), (7.3)

which confirms our previous decomposition.
Next, let us consider H = C2⊗C2⊗C2, where rZ = Z̃ = Z ⊗ I ⊗ I + I ⊗Z ⊗ I + I ⊗ I ⊗Z. Here

the eigenvalues are

{3,1,1,1,−1,−1,−1,−3} = {3,1,−1,−3} ⊔ {1,−1} ⊔ {1,−1},

which implies that

(C2)⊗3 = C2 ⊗C2 ⊗C2 ≅ Sym3(C2)⊕ Sym1(C2)⊕ Sym1(C2). (7.4)

At least in principle it is now clear how to proceed for arbitrary tensor powers (C2)⊗n.
However, the counting gets more involved the larger n, so it is desirable to figure out an inductive
way of computing this decomposition. The basic problem that we have to solve is the following.

49



Suppose that we have an irreducible representation Symk(C2) and we tensor it with an additional
qubit C2, i.e., we consider the representation

H = Symk(C2)⊗C2, RU = T (k)U ⊗U.

How does it decompose into irreducibles? The answer is the following:

H = Symk(C2)⊗C2 ≅
⎧⎪⎪⎨⎪⎪⎩

Symk+1(C2)⊕ Symk−1(C2) if k > 0
C2 if k = 0.

(7.5)

To confirm this formula, note that rZ = t(k)Z ⊗ I + I ⊗Z, so that the eigenvalues are

{−k ± 1,−k + 2 ± 1, . . . , k − 2 ± 1, k ± 1} = {−(k + 1),−(k − 1), . . . , k − 1, k + 1} ⊔ {−(k − 1), . . . , k − 1};

the second set is empty if k = 0. See Fig. 14 for an illustration.
Equation (7.5) is as special case of the so-called Clebsch-Gordan rule that you might know from

a quantum mechanics class. It tells you more generally how to decompose Symk(C2)⊗Syml(C2).
We will not need the general result but it can be proved just like above.

Let’s quickly check that Eq. (7.5) reproduces the same results that we derived above. We
start by

(C2)⊗2 = Sym1(C2)⊗C2 ≅ Sym2(C2)⊕ Sym0(C2).

The last step is using the Clebsch-Gordan rule and the result is in agreement with Eqs. (7.1)
and (7.3). Next, we decompose the third tensor power by tensoring with an additional qubit:

(C2)⊗3 = (C2)⊗2 ⊗C2 ≅ (Sym2(C2)⊕ Sym0(C2))⊗C2

≅ (Sym2(C2)⊗C2)⊕ (Sym0(C2)⊗C2)
≅ (Sym3(C2)⊕ Sym1(C2))⊕ (Sym1(C2))
= Sym3(C2)⊕ Sym1(C2)⊕ Sym1(C2),

which confirms Eq. (7.4). Here we first used the two-qubit result, then the distributivity law,
and finally the Clebsch-Gordan rule. Similarly,

(C2)⊗4 ≅ (Sym3(C2)⊕ Sym1(C2)⊕ Sym1(C2))⊗C2

≅ Sym4(C2)⊕ Sym2(C2)⊕ Sym2(C2)⊕ Sym2(C2)⊕ Sym0(C2)⊕ Sym0(C2).

It is now clear how to decompose (C2)⊗n for arbitrary n in an inductive fashion. We will use
this to great effect in two weeks in Lectures 11 and 12. There, we will also learn how to extend
our considerations from SU(2) to U(2).

7.3 Density operators

Before we proceed with entanglement and symmetries, we need to introduce another bit of
formalism to our toolbox that allows us talk about ensembles of quantum states.

Suppose that we have a device – let’s call it a quantum information source – that emits
different quantum states ∣ψi⟩ with probability pi each, where i ranges in some index set, as in
the following picture:
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We call {pi, ∣ψi⟩} an ensemble of quantum states on some Hilbert space H. Importantly, the
state ∣ψi⟩ need not be orthogonal.

What are the statistics that we obtain when we measure a POVM {Qx}x∈Ω? Clearly this is
given by

Pr(outcome x) =∑
i

piPrψi
(outcome x) =∑

i

pi ⟨ψi∣Qx∣ψi⟩ =∑
i

pi tr [∣ψi⟩ ⟨ψx∣Qx] = tr[∑
i

pi ∣ψi⟩ ⟨ψx∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ρ

Qx],

where we first used the fact that state ψi is emitted with probability pi and then the usual Born’s
rule. The operator ρ defined above is called a density operator (or a density matrix ) – or simply
a quantum state on H. It satisfies ρ ≥ 0 and trρ = 1, and any such operator arises from some
ensemble of quantum states (think of the spectral decomposition!). Thus, Born rule for density
operators reads

Prρ(outcome x) = tr[ρQx],

as we just calculated. Similarly, if X = ∑x Px is an observable then its expectation value can
likewise be computed in terms of the density operator:

Eρ[outcome] = tr[ρX]

as is easily verified. In Problem 3.4 you will verify that if we perform a projective measurement
{Px}x∈Ω on an ensemble with density operator ρ and we obtain the outcome x, then the post-
measurement state corresponds to an ensemble with density operator

ρ′ = PxρPx
tr[ρPx]

If ρ = ∣ψ⟩ ⟨ψ∣ then we say that it is a pure state and it is not uncommon to also write ρ = ψ
in this case (in agreement with our previous definition). Note that ρ is pure iff rkρ = 1 iff the
eigenvalues of ρ are {1,0, . . . ,0} iff ρ2 = ρ. If ρ is not pure then it is called a mixed state (but
this is also often used synonymously with “density operator”).

Example 7.1 (Warning!). In general, the ensemble that determines a density operator is not
unique. E.g., the density operator τ ∶= I/2 can be written in an infinite number of ways:

τ = 1

2
(∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣) = 1

2
(∣+⟩ ⟨+∣ + ∣−⟩ ⟨−∣) = 1

4
(∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣ + ∣+⟩ ⟨+∣ + ∣−⟩ ⟨−∣) = . . .

The first two expressions are two different spectral decompositions, which is possibly only because the
operator has a degenerate eigenspace. The last expression, however, is not a spectral decomposition
since the states used are not all pairwise orthogonal and the probability 1/4 is not an eigenvalue
of τ . There are infinitely many other ensembles that give rise to τ .

More generally, if H is a Hilbert space then τH = IH/dimH is known as the maximally mixed
state on H. It is the analog of a uniform distribution in probability theory.

Density operators arise in a number of places. For example, they describe quantum information
sources (as we saw above) and ensembles in statistical physics (e.g., Gibbs states). They also
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allow us to embed classical probability distributions into quantum theory: E.g., if {px}dx=1 is an
ordinary probability distribution then it makes sense to associate it with the ensemble {px, ∣x⟩}
on Cd (since classical states should be perfectly distinguishable and hence orthogonal), and this
ensemble in turn gives rise to the density operator

ρX =∑
x

px ∣x⟩ ⟨x∣ = (
p1

p2
⋱
pd
). (7.6)

More generally, if p(x1, . . . , xn) is a joint probability distribution then we may consider the
ensemble {p(x1, . . . , xn), ∣x1⟩⊗ . . .⊗ ∣xn⟩}. The corresponding density operator is

ρX1...Xn = ∑
x1,...,xn

p(x1, . . . , xn) ∣x1⟩ ⟨x1∣⊗ . . .⊗ ∣xn⟩ ⟨xn∣ . (7.7)

We call quantum states as in Eqs. (7.6) and (7.7) classical states. Note that if all probabilities
p(x1, . . . , xn) are the same then ρX1,...,Xn is a maximally mixed state, ρ = τ .

Importantly, density operators also arise describing the state of quantum subsystems, as we
will discuss in the following section.

7.4 Reduced density operators and partial trace

Suppose that ρAB is a quantum state on HA⊗HB . We could like to find the mathematical object
(hopefully, a density operator) that describes the state of subsystem A, as illustrated below:

As before, we consider a POVM measurement {QA,x}x∈Ω on HA. According to our postulates, we
know that we need to consider the POVM {QA,x⊗IB} when we want to perform this measurement
on a joint system ρAB. Thus,

PrρAB
(outcome x) = tr[ρAB(QA,x ⊗ IB)]

=∑
a,b

⟨ab∣ρAB(QA,x ⊗ IB)∣ab⟩

=∑
a,b

⟨a∣(IA ⊗ ⟨b∣)ρAB(IA ⊗ ∣b⟩)QA,x∣a⟩

=∑
a

⟨a∣∑
b

(IA ⊗ ⟨b∣)ρAB(IA ⊗ ∣b⟩)QA,x∣a⟩

= tr[∑
b

(IA ⊗ ⟨b∣)ρAB (IA ⊗ ∣b⟩)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶trB[ρAB]

QA,x]

The operation trB just introduced is called the partial trace over B. If ρAB is a quantum state
then trB[ρAB] is called the reduced density operator (or reduced density matrix of ρAB. We will
often denote it by ρA ∶= trB[ρAB] (even though this can at times seem ambiguous). Conversely,
ρAB is said to be an extension of ρA. By construction,

tr[ρAB(XA ⊗ IB)] = tr[ρAXA], (7.8)
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and so the reduced density operator ρA is the appropriate object when compuitng probabilities
and expectation values for measurements on A. E.g., as we derived above, for every POVM
measurement {QA,x} on HA we have

PrρAB
(outcome x) = PrρA(outcome x) = tr[ρAQA,x]

and, similarly, for every observable XA on HA,

EρAB
[outcome] = EρAB

[outcome] = tr[ρAXA].

Thus, the reduced density operator faithfully describes the state of the subsystem A if the overall
system is in state ρAB.

We can also compute partial traces of operator that are not quantum states: If MAB is an
arbitrary operator on HA ⊗HB then its partial trace over B is defined just as before by the
formula

trB[MAB] =∑
b

(IA ⊗ ⟨b∣)MAB (IA ⊗ ∣b⟩) .

However, if MAB is not a state then we will never denote this partial trace by MA.
The following useful rule tells us how to compute partial traces of tensor product operators

MA ⊗NB and justifies the term “partial trace”:

trB[MA ⊗NB] =MA tr[NB] (7.9)

It follows directly from the definition:

trB[MA ⊗NB] =∑
b

(IA ⊗ ⟨b∣) (MA ⊗NB) (IA ⊗ ∣b⟩) =MA∑
b

⟨b∣NB ∣b⟩ =MA tr[NB].

Other useful properties are

• trB[(MA ⊗ IB)XAB(M ′
A ⊗ IB)] =MA trB[OAB]M ′

B (we can pull out operators on A),

• trB[(I ⊗MB)OAB] = trB[OAB(I ⊗MB)] (the partial trace is cyclic for operators on B).

Remark. A useful convention that you will often find in the literature is that tensor products
with the identity operator are omitted. E.g., instead of XA ⊗ IB we would write XA, since the
subscripts already convey the necessary information. Thus, instead of Eqs. (7.8) and (7.9) we
would write

tr[ρABXA] = tr[ρAXA],
trB[MANB] =MA tr[NB]

which is arguably easier to read.

Let us close today’s lecture with an example in which we explicitly compute the reduced
density operator of the ebit.

Example (Warning!). Even if ρAB is a pure state, ρA can be mixed! Consider the ebit state
∣ψ⟩AB = 1√

2
(∣00⟩ + ∣11⟩). The corresponding density operator is

ρAB = ∣ψ⟩ ⟨ψ∣AB =
1

2
(∣00⟩ + ∣11⟩) (⟨00∣ + ⟨11∣)

= 1

2
(∣00⟩ ⟨00∣ + ∣11⟩ ⟨00∣ + ∣00⟩ ⟨11∣ + ∣11⟩ ⟨11∣)

= 1

2
(∣0⟩ ⟨0∣⊗ ∣0⟩ ⟨0∣ + ∣1⟩ ⟨0∣⊗ ∣1⟩ ⟨0∣ + ∣0⟩ ⟨1∣⊗ ∣0⟩ ⟨1∣ + ∣1⟩ ⟨1∣⊗ ∣1⟩ ⟨1∣) ,
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and so the reduced density operator ρA is given by

ρA = trB[∣ψ⟩ ⟨ψ∣AB] =
1

2
(∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣) = (

1
2 0

0 1
2

) ,

where we used Eq. (7.9). Thus ρA is a mixed state.
In fact, ρA is the maximally mixed state τA introduced in/below Example 7.1. Note that this

matches precisely our calculation in Eq. (2.2) in Lecture 2.
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Symmetry and Quantum Information February 27, 2018

Entanglement of pure and mixed states, monogamy of entanglement
Lecture 8 Michael Walter, University of Amsterdam

Yesterday, in Lecture 7 we introduced density operators and partial traces. We ended with
an example of a pure state (the ebit state) whose reduced density operators were maximally
mixed. This was not an accident, as we will discuss in the following.

8.1 Purification and Schmidt decomposition

In fact, for every density operator ρA on HA there exist pure states ∣ΨAB⟩ ∈ HA ⊗HB, where
HB is some auxiliary Hilbert space, such that

trB[∣ΨAB⟩ ⟨ΨAB ∣] = ρA.

We call ∣ΨAB⟩ a purification of ρA. In other words, purifications are pure states that extend a
given density operator.

Remark. This justifies why in Lecture 3 we were allowed to only consider quantum strategies that
involved pure states (and observables). At the expense of adding an auxiliary Hilbert space, we
can always replace mixed states by pure states (and generalized measurements by measurements
of observables, as we discussed in Lecture 2).

To see that purifications exist, take the spectral decomposition of the density operator,
ρA = ∑ri=1 pi ∣ψi⟩ ⟨ψi∣. Then

∣ΨAB⟩ ∶=∑
i

√
pi ∣ψi⟩A ⊗ ∣i⟩B

is a purification on HA ⊗HB, where HB = Cr.
Are purifications unique? Not quite! However, if ∣ΨAB⟩ and ∣Ψ′AB⟩ are two purifications on

the same Hilbert space HA ⊗HB then there always exists a unitary UB on HB such that

(IA ⊗UB) ∣ΨAB⟩ = ∣Ψ′AB⟩ . (8.1)

See Remark 8.1 below for a more general version of this statement, which you will prove on the
problem set.

How about if we have purifications with different HB? For this and many other questions, the
following result is useful: Every pure state ∣ΨAB⟩ ∈HA⊗HB has a so-called Schmidt decomposition

∣ΨAB⟩ =
r

∑
i=1
si ∣ei⟩A ⊗ ∣fi⟩B ,

where si > 0 and the ∣ei⟩A and ∣fi⟩B are sets of orthonormal vectors in HA and HB, respectively.
This is just a restatement of the singular value decomposition. As a consequence, the reduced
density operators of ∣ΨAB⟩ are given by

ρA =∑
i

s2i ∣ei⟩ ⟨ei∣A , ρB =∑
i

s2i ∣fi⟩ ⟨fi∣B (8.2)

Thus the eigenvalues of the reduced density operators are directly related to the coefficients si.
In particular, the nonzero eigenvalues of ρA and ρB are equal (including in their multiplicities)!

55



Remark 8.1. Using the Schmidt decomposition, it is not hard to deduce the following statement:
Consider two arbitrary purifications ∣ΨAB⟩ ∈ HA ⊗HB and ∣Ψ′AB′⟩ ∈ HA ⊗HB′. If dimHB ≤
dimHB′ then there exists an isometry VB→B′ ∶HB →HB′ such that

(IA ⊗ VB→B′) ∣ΨAB⟩ = ∣Ψ′AB′⟩ .

This statement generalizes Eq. (8.1). You will prove it on Problem 5.2.

The Schmidt decomposition has a number of important consequences. For one, it helps us to
understand entanglement in pure states. For example, it shows that if ∣Ψ⟩AB = ∣ψ⟩A ⊗ ∣ψ⟩B is a
product state then its reduced density operators are pure. Conversely, if either of the reduced
density operators of a pure state ∣Ψ⟩AB is pure then ∣ΨAB⟩ must be a product state. In other
words, if ρA or ρB are mixed then this is a signature of entanglement (for pure states)! This
suggests that quantities built from the eigenvalues of the reduced density operators such as
the entanglement entropy that some of you might already know should be good entanglement
measures. You will explore this further in Problem 4.1 and we will discuss the entanglement
entropy in Lecture 10.

How about if ρAB is a general density operator (not necessarily pure)? Then it is still true
that

ρA pure ⇒ ρAB = ρA ⊗ ρB (8.3)

(but ρB can now be mixed). To see this, choose an arbitrary purification ∣ΨABC⟩ of ρAB. Since
ρA = trBC[∣ΨABC⟩ ⟨ΨABC ∣] is pure, we know from the preceding discussion that we must have

ΨABC = ∣ψA⟩⊗ ∣ϕBC⟩ ,

where ρA = ∣ψA⟩ ⟨ψA∣. But then

ρAB = trC[∣ΨABC⟩ ⟨ΨABC ∣] = trC[∣ψA⟩ ⟨ψA∣⊗ ∣ϕBC⟩ ⟨ϕBC ∣] = ∣ψA⟩ ⟨ψA∣⊗ trC[∣ϕBC⟩ ⟨ϕBC ∣] = ρA ⊗ ρB,

since necessarily ρB = trC[∣ϕBC⟩ ⟨ϕBC ∣]. This is what we wanted to show.

Monogamy of entanglement is the idea that if two systems are strongly entangled then each
of them cannot be entangled very much with other systems. We can get some intuition why this
should be true as consequence of Eq. (8.3). For example, suppose that

ρAB = ∣Ψ⟩ ⟨Ψ∣AB

where ∣Ψ⟩AB is in a pure state – say, a maximally entangled state. Since ρAB is pure, any
extension ρABC must factorize,

ρABC = ρAB ⊗ ρC ,
as implied by Eq. (8.3) (with A = AB and B = C). Thus, A and B are both completely
uncorrelated with C (Fig. 2). In particular, ρAC = ρA⊗ ρC and ρBC = ρB ⊗ ρC are product states.

Remark. The above analysis should perhaps be taken with a grain of salt. Since it only relied on
ρAB being in a pure state, it is also applicable to, say, ψAB = ∣0⟩A ⊗ ∣0⟩B – which is a product
state, not an entangled state! Nevertheless, the conclusion remains that also in this case ρAC
and ρBC have to product states. However, this is a consequence of ρA = ∣0⟩ ⟨0∣A and ρB = ∣0⟩ ⟨0∣B
being pure, not of entanglement between A and B.

Does monogamy hold more generally for mixed states and can it be made quantitative?
Indeed this is possible – and we will see that symmetry is the key.
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Figure 2: Illustration of monogamy of entanglement.

8.2 Mixed state entanglement

First, though, we have to define what it means for a general quantum state to be entangled. For
pure states ∣ΨAB⟩, we already know that a state is entangled if and only if it is not a tensor
product,

∣ψ⟩AB ≠ ∣ψ⟩A ⊗ ∣ψ⟩B .
For mixed states, however, there are non-product quantum states that should nevertheless not
be considered entangled.

Example 8.2 (Classical joint distributions). Let p(x, y) be a probability distribution of two
random variables. Following (7.7), we construct a corresponding density operator

ρAB =∑
x,y

p(x, y) ∣x⟩ ⟨x∣A ⊗ ∣y⟩ ⟨y∣B .

In general, ρAB is not a product state (indeed, ρAB is a product state precisely when the two
random variables are independent). For example, if Alice and Bob know the outcome of a fair
coin flip, their state would be described by the density operator

ρAB =
1

2
(∣00⟩ ⟨00∣AB + ∣11⟩ ⟨11∣AB) ,

that is not of product form. However, the “non-productness” in ρAB corresponds to classical
correlations, so we do not want to think of ρAB as being entangled.

This suggests the following general definition: We say that a quantum state ρAB is entangled
if and only if it is not a mixture of product states:

ρAB ≠∑
i

piρ
(i)
A ⊗ ρ

(i)
B . (8.4)

Here, {pi} is an arbitrary probability distribution and the ρ(i)A and ρ(i)B . States of the right-hand
side form are called separable or simply unentangled. If ρAB = ∣ψ⟩ ⟨ψ∣AB is a pure state then
ρAB it is separable exactly if it is a tensor product, ∣ψ⟩AB = ∣ψ⟩A ⊗ ∣ψ⟩B, so this generalizes our
definition of entanglement for pure states.

Remark. There are separable states other than the classical states in Example 8.2. This is
because we do not demand the operators {ρ(i)A } and {ρ(i)B } in Eq. (8.4) are orthogonal.

Remark 8.3. Separable states have a pleasant operational interpretation. They are the largest
class of quantum states σAB that can be created by Alice and Bob in their laboratories if allow
Alice and Bob to perform arbitrary quantum operations in their laboratory but restrict their
communication with each other to be classical.
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Figure 3: The set of separable states SEP is a convex subset of the set of all quantum states
Q. Hyperplanes (such as the pink one) that contain all separable states on one side give rise to
entanglement witnesses.

Let us denote the set of all density operators on HA ⊗HB by

QAB = {ρAB ∶ ρAB ≥ 0, trρAB = 1}

and the subset of separable states by

SEPAB = {ρAB separable}.

Both sets are convex. As a consequence of SEPAB being convex, it can be faithfully defined by a
collection of separating hyperplanes, i.e., hyperplanes that contain all separable state on one side
(Fig. 3). Any such hyperplane gives rise to an entanglement witness – a one-sided test that can
be used to certify that a state is entangled. You will explore them in Problem 4.5.

On the other hand, testing whether an arbitrary quantum state ρAB is separable or entangled
is unfortunately a very difficult problem. In fact, deciding if a given density operator (given in
terms of all its matrix elements) is separable is an NP-hard problem! This means that we are
unlikely to ever find an efficient (as in, polynomial-time) algorithm. In practice, the situation is
less bleak since we have ways of testing whe a quantum state is approximately separable (see
below).

8.3 Monogamy and symmetry

We are now ready to study the monogamy of entanglement in more detail. We will consider two
situations where we would expect monogamy to play a role:

De Finetti theorem

First, consider a permutation-symmetric state

∣Ψ⟩A1...AN
∈ SymN(Cd).

Note that all the reduced density matrices ρAiAj are the same. Thus, any particle is equally
entangled with any other particle, and so we would expect that by monogamy each pair is
therefore not “very much” entangled at all (Fig. 4, (a)).

The quantum de Finetti theorem asserts that our expectation is indeed correct:

ρA1...Ak
≈ ∫ dψ p(ψ) ∣ψ⟩⊗k ⟨ψ∣⊗k (8.5)
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Figure 4: (a) In a permutation symmetric state, any pair of particles is entangled in the same
way and should therefore not be entangled very much. (b) Similarly, if Alice is entangled with
many Bobs in the same way then she is not entangled very much with each of them.

as long as k ≪ n/d, where k + n = N . Here, p(ψ) is some probability density over the set of pure
states that depends on the state ρ. In particular, ρA1A2 is approximately a mixture of product
states for large n.

Example (Warning). The GHZ state ∣γ⟩A1A2A3
= (∣000⟩ + ∣111⟩)/

√
2 is a state in the symmetric

subspace Sym3(C2). Note that, e.g., the first particle is maximally entangled with the other two –
so clearly it is not true that permutation symmetric states are unentangled. However, if we look
at the reduced state of two particles then we find

ρA1A2 =
1

2
(∣00⟩ ⟨00∣ + ∣11⟩ ⟨11∣) = 1

2
∣0⟩⊗2 ⟨0∣⊗2 + 1

2
∣1⟩⊗2 ⟨1∣⊗2 ,

which is a mixture (not a superposition) of product states. This example shows that the partial
trace is indeed necessary.

Permutation symmetric states arise naturally in mean-field systems. The ground state ∣E0⟩
of a mean-field Hamiltonian H = ∑1≤i<j≤n hij is necessarily in the symmetric subspace – provided
that the ground space is nondegenerate and that n is larger than the single-particle Hilbert space.
Thus, the de Finetti theorem shows that, locally, ground states of mean field systems look like
mixtures of product states – a property that is highly useful for their analysis. You will explore
this in more detail in Problem 4.2.

Extendibility hierarchy

A closely related situation is the following: Suppose that ρAB is a quantum state that has an
extension ρAB1...Bn such that

ρABi = ρAB (∀i, j)

(Fig. 4, (b)). We say that ρAB has an n-extension. Thus A is equally entangled with all Bi and
so we would expect that ρAB is not entangled “very much”. Indeed, it is true that, for large n,

ρAB ≈∑
i

piρ
(i)
A ⊗ ρ

(i)
B ,

i.e., ρAB is again approximately a mixture of product states.
In contrast to situation (1), however, there is no longer a symmetry requirement between

A and B, i.e., this reasoning applies to general states ρAB. It turns out that one in this way
obtains a hierarchy of efficient approximates test for separability. If a state ρAB is n-extendible
then it is O(1/n)-close to being a separable state (Fig. 5).
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8.4 The trace distance between quantum states

Before we proceed, we should make more precise what we meant when we wrote “≈” above. Let
ρ and σ be two density operators on some Hilbert space H. We define their trace distance to be

T (ρ, σ) ∶= max
0≤Q≤IH

tr[Q(ρ − σ)].

The trace distance is a metric, and so in particular satisfies the triangle inequality. It has the
following alternative expression

T (ρ, σ) = 1

2
∥ρ − σ∥1,

where we used the trace norm, which for general Hermitian operators ∆ with spectral decomposi-
tion ∆ = ∑i λi ∣ei⟩ ⟨ei∣ is defined by ∥∆∥1 = ∑i∣λi∣. The trace distance has a natural operational
interpretation in terms of the optimal probability of distinguishing ρ and σ by a POVM measure-
ment. You discussed this in Problem 1.5 in the special case of pure states, but the properties
described above hold in general.

Remark. It is easy to see that the trace distance never increases when we trace out a system,
i.e.,

T (ρA, σA) ≤ T (ρAB, σAB)

for any two density operators ρAB, σAB. You will prove this in Problem 5.1.

On the problem set, you also proved that, for pure states ρ = ∣ϕ⟩ ⟨ϕ∣ and σ = ∣ψ⟩ ⟨ψ∣, the trace
distance and overlap are related by the following formula:

T (ρ, σ) =
√
1 − ∣⟨ϕ∣ψ⟩∣2 (8.6)

Remark. If X is an arbitrary observable then

∣tr[Hρ] − tr[Hσ]∣ ≤ 2T (ρ, σ)∥H∥∞, (8.7)

where ∥H∥∞ denotes the operator norm of H, defined as the maximal absolute value of all
eigenvalues of H. Indeed, we can always write H = Q −Q′ where 0 ≤ Q,Q′ ≤ ∥H∥∞, and so

∣tr[Hρ] − tr[Hσ]∣ ≤ ∣tr[Qρ] − tr[Qσ]∣ + ∣tr[Q′ρ] − tr[Q′σ]∣ ≤ 2∥H∥∞T (ρ, σ).

Equation (8.7) quantifies the difference in expectation values for states with small trace distance.
(Of course, this gap gap can be arbitrarily large since we can always rescale our observable.

This is reflected by the factor ∥H∥∞.)

8.5 The quantum de Finetti theorem

We will now prove the quantum de Finetti theorem, which establishes (8.5) in the following
precise form:

Theorem 8.4 (Quantum de Finetti theorem for states on symmetric subspace). Let ∣Φ⟩A1...AN
∈

SymN(Cd) be a state on the symmetric subspace, ρ = ∣Φ⟩ ⟨Φ∣, and N = k + n. Then

T (ρA1...Ak
,∫ dψ p(ψ) ∣ψ⟩⊗k ⟨ψ∣⊗k) ≤

√
dk

n
,

where p(ψ) is a probability density on the space of pure states on Cd (which depends on ∣Φ⟩).
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Figure 5: The extendibility hierarchy: If a state is n extendible then it is O(1/n)-close to being
separable.

Proof. We follow the proof strategy in Brandao et al. (2016). Let

∣Φ⟩A1...AN
∈ SymN(Cd),

where N is the number of particles and d the dimension of the single-particle Hilbert space.
The basic idea is the following: Suppose that we measure with the uniform POVM (4.7) on

the last n ∶= N − k systems of ρ = ∣Φ⟩ ⟨Φ∣. Then, if the measurement outcome is some ∣ψ⟩, we
would expect that the first k systems are likewise in the state ∣ψ⟩⊗k, at least on average, since
the overall state is permutation symmetric among all n subsystems.

Let us try to implement this idea. Since ∣Φ⟩ ∈ SymN(Cd), it is in particular symmetric under
permutations of the last n = N − k subsystems. Hence, ∣Φ⟩ = (Ik ⊗Πn) ∣Φ⟩, and so

ρA1...Ak
= trAk+1...AN

[∣Φ⟩ ⟨Φ∣] = trAk+1...AN
[(Ik ⊗Πn) ∣Φ⟩ ⟨Φ∣]

= (n + d − 1
n

)∫ dψ (Ik ⊗ ⟨ψ∣⊗n) ∣Φ⟩ ⟨Φ∣ (Ik ⊗ ∣ψ⟩⊗n) = ∫ dψ p(ψ) ∣Vψ⟩ ⟨Vψ ∣ .

In the second to last step, we have inserted the resolution of identity (4.6), and in the last step,
we have introduced introduced unit vectors ∣Vψ⟩ and numbers p(ψ) ≥ 0 such that

√
p(ψ) ∣Vψ⟩ = (

n + d − 1
n

)
1/2
(Ik ⊗ ⟨ψ∣⊗n) ∣Φ⟩ . (8.8)

Note that p(ψ) is a probability density. Indeed, ∫ dψ p(ψ) = trρ = 1, since the overall state is
normalized. We would now like to prove that

ρA1...Ak
= ∫ dψ p(ψ) ∣Vψ⟩ ⟨Vψ ∣ ≈ ∫ dψ p(ψ) ∣ψ⟩⊗k ⟨ψ∣⊗k =∶ ρ̃A1...Ak

, (8.9)

based on the intuition expressed above that on average the post-measurement states ∣Vψ⟩ are
close to ∣ψ⟩⊗k. Let us first consider the average squared overlap:

∫ dψ p(ψ) ∣⟨Vψ ∣ψ⊗k⟩∣2 = ∫ dψ p(ψ) ⟨Vψ ∣ψ⊗k⟩ ⟨ψ⊗k∣Vψ⟩

= (n + d − 1
n

)∫ dψ ⟨Φ∣ψ⊗(n+k)⟩ ⟨ψ⊗(n+k)∣ ∣Φ⟩⟩

= (n + d − 1
n

)(n + k + d − 1
n

)
−1
⟨Φ∣Πn+k∣Φ⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

= (n + d − 1
n

)(n + k + d − 1
n

)
−1
≥ 1 − kd

n
.
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In the second step, we inserted the definition of ∣Vψ⟩ from Eq. (8.8). Then we applied formula (4.6)
to remove the integral, and the last inequality is precisely (4.8), since there we bounded precisely
the ratio of binomial coefficients that we are interested in here. This is (almost) the desired
result – the average squared overlap is close to one as long as n≫ kd.

It remains to show that the two states ρ and ρ̃ in Eq. (8.9) are also close in trace distance.
Indeed,

T (ρA1...Ak
, ρ̃A1...Ak

) = 1

2
∥ρA1...Ak

− ρ̃A1...Ak
∥

≤ ∫ dψ p(ψ)1
2
∥ρA1...Ak

− ρ̃A1...Ak
∥

= ∫ dψ p(ψ)T (∣Vψ⟩ ⟨Vψ ∣ , ∣ψ⟩⊗k ⟨ψ∣⊗k)

= ∫ dψ p(ψ)
√

1 − ∣⟨Vψ ∣ψ⊗k⟩∣2

≤
√
∫ dψ p(ψ) (1 − ∣⟨Vψ ∣ψ⊗k⟩∣2)

=
√

1 − ∫ dψ p(ψ) ∣⟨Vψ ∣ψ⊗k⟩∣2 ≤
√

kd

n
.

Here, we first applied the triangle inequality, then we used the relationship between trace distance
and fidelity for pure states from Eq. (8.6), and the next inequality is Jensen’s inequality (for the
square root function, which is concave). (Jensen’s inequality for a concave function f asserts
that E[f(X)] ≤ f(E[X]) for any random variable X.) Thus we have proved the quantum de
Finetti theorem.

In Problems 4.2 and 4.3 you will explore some applications of the theorem.

Remark. From our proof we also obtain an explicit form for the density p(ψ), namely p(ψ) =
⟨Φ∣Ik ⊗Qψ ∣Φ⟩, where {Qψ} is the uniform POVM (4.7).

Beyond the symmetric subspace

Our intuition behind the de Finetti theorem only relied on the fact that the reduced density
matrices were all the same. But this is a feature that states on the symmetric subspace share
with arbitrary permutation-invariant states, i.e., states that satisfy

[Rπ, ρA1...AN
] = 0, or RπρA1...AN

= ρA1...AN
Rπ

for all π ∈ SN . Examples of permutation-invariant states are states on the antisymmetric subspace,
or tensor powers of mixed states, such as ρ⊗N , which we will study in more detail in Lecture 12.

To obtain a de Finetti theorem for this situation, it is useful to prove that any permutation-
invariant state ρA1...AN

has a purification on a symmetric subspace: That is, there exists a
pure state ∣Φ⟩(A1B1)...(ANBN ) ∈ Sym

n(HA ⊗HB), where HB is some auxiliary space, such that
ρ(A1B1)...(ANBN ) = ∣Φ⟩ ⟨Φ∣ is an extension of ρA1...AN

. The auxiliary space HB can be chosen of
the same dimension as HA. (You see an easy example of this in Problem 4.3.) The point is that
we can now apply the quantum de Finetti theorem proved above to the purification!

Following this strategy, you will prove in Problem 5.3 the following version of the quantum
de Finetti theorem:
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Theorem 8.5 (Quantum de Finetti theorem for permutation-invariant states). Let ρA1...AN
be a

permutation-invariant quantum state on (Cd)⊗N and N = k + n. Then

T (ρA1...Ak
,∫ dµ(σ) σ⊗k) ≤

√
d2k

n
,

where dµ(σ) is a probability measure on the space of density operators on Cd (which depends
on ρ).

Nowadays, there are many further variants of the de Finetti theorem that quantify the
monogamy of entanglement in interesting and useful ways.
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Classical and quantum data compression
Lecture 9 Michael Walter, University of Amsterdam

Today we will discuss one of the very well-known objectives of information theory: the
compression of data sources. We will start with classical data compression (i.e., the compression
of bitstrings), which was solved by Shannon in the late 40s. The results obtained for classical bit
strings will turn out to be directly useful for solving our main problem of interest – namely, the
compression of quantum data (i.e., strings of qubits).

9.1 Classical data compression

Imagine that Alice has acquired a biased coin, with heads coming up with p = 75% probability.
She is excited about her purchase and wants to let Bob know about the result of her coin flips. If
the flips the coin once, how many bits does she need to communicate the result to Bob? Clearly,
sheshould send over one bit. Otherwise, since both outcomes are possible, she would make an
error 25% of the time! See Fig. 6 for an illustration of the situation.

Now suppose that Alice flips her coin not only once, but a large number of times – say n times.
She would still like to communicate the results of her coin flips to Bob. Clearly, Alice could send
over one bit immediately after each coin flip. Can she do better by waiting and looking at the
whole sequence of coin flips? In other words, what is the minimal compression rate, i.e., the
minimal rate of bits per coin flip that Alice needs to send to Bob in order to communicate the
outcomes of her coin flips (with an arbitrarily small probability of error)?

A sequence of coin flips will in general be an arbitrary string of the form

HHTHHHTHHHHHHHHHHHHHHHHHHTHHHHHHHHHHHTHH

Let us denote by k the number of heads (H) in such a sequence, so that n − k is the number of
tails (T). The probability of any such sequence is given by pk(1 − p)n−k.

What do “typical” sequences look like? If we assume that Alice’ coin flips are independent
then we would expect that heads will come up k ≈ pn times for large enough n. Indeed, a version
of the (weak) law of large numbers states that, for any fixed ε > 0,

Pr(∣k
n
− p∣ > ε) = O( 1

n
)→ 0 (9.1)

as n→∞. Let us thus define a typical sequence as a sequence of n coin flips such that ∣ kn − p∣ ≤ ε.
(Note that this definition depends on a choice of ε, so it might make sense to speak of an ε-typical
sequence instead.) In this language, Eq. (9.1) asserts that the probability that Alice receives a
typical sequence goes to one in the limit of many coin flips.

Remark. This also gives a good way of estimating the bias of the coin if Alice does not know
the values of p and 1 − p beforehand. Simply flip the coin many times and output p̂ ∶= k

n as an
estimate of p, where k is the number of heads. We will later learn how to similarly characterize a
quantum data source.

This suggests the following compression scheme:
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Figure 6: Alice wants to communicate the result of her coin flips to Bob by sending over a minimal
number of bits. This an instance of a compression problem of classical data (the outcomes of
Alice’ coin flips).

Classical data compression protocol: Let ε > 0 be fixed.

• If the number of coin flips k is not within (p ± ε)n, Alice gives up and signals failure.

• Otherwise, Alice sends k over to Bob, and she also sends the index i of her particular
sequence of coin flips in a list Lk that contains all possible coin flips with k heads and
n − k tails.

If our two protagonists agree beforehand on the lists Lk (you might say that they form the
codebook), then Bob will have no trouble decoding the sequence of coin flips – he merely looks
up the i-th entry in the list Lk.

What is the probability of failure in the first step of this protocol? As a direct consequence
of the law of large numbers this becomes arbitrarily small for large enough n, as we discussed
above.

Remark. If failure is not an option, Alice may instead send the uncompressed sequence of coin
flips instead of giving up. This leads to a similar analysis (in terms of the average compression
rate) and will be left as an exercise.

Is this protocol useful for compression? To send k ∈ {0, . . . , n}, we need no more than
log(n + 1) bits. Since log(n + 1)/n→ 0, this does not impact the compression rate in the limit of
large n. How many bits to we need to send the index i? The number of bits required depends
on the number of sequences with k heads and n − k tails, where k/n ≈ p. Let us first count the
number of sequences with k heads and n−k tails for an arbitrary value of k. This is simply given
by the binomial coefficnet (nk). To estimate this number, we use the following trick: For every
x ∈ [0,1], we have

1 = (x + (1 − x))n =
n

∑
l=0
(n
l
)xl(1 − x)n−l ≥ (n

k
)xk(1 − x)n−k.

Choosing x = k/n, we obtain the upper bound

(n
k
) ≤ x−k(1 − x)−(n−k) = (k

n
)
−k
(1 − k

n
)
−(n−k)

= 2−k log(
k
n
)−(n−k)(1− k

n
) = 2nh(

k
n
), (9.2)

where we defined the binary (Shannon) entropy function

h(p) ∶= −p log p − (1 − p) log(1 − p). (9.3)

Here and throughout the rest of these lecture notes, log will always denote the logarithm to the
base two. We also define 0 log 0 ∶= 0 so that h(p) is a continuous function defined for all p ∈ [0, 1].
See Fig. 7 for a plot of the binary entropy function.
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Figure 7: The binary entropy function h(p) defined in Eq. (9.3).

Thus, there are no more than 2nh(k/n) many sequences with k heads and n− k tails. Now, for
typical sequences, ∣k/n − p∣ ≤ ε and so there are no more than roughly 2n(h(p)+ε

′) many typical
sequences for some constant ε′ > 0 (which depends on our choice of ε and the continuity of the
entropy function at p). Thus, we need no more than n(h(p) + ε′) bits to send over the index. In
total, the compression rate of our protocol is no larger than

R = # bits
# coin flips

≤ log(n + 1)
n

+ h(p) + ε′. (9.4)

Both the first and the third term can be made arbitrarily small – the former by choosing n
sufficiently large, and the latter by choosing ε sufficiently small.

In summary, the protocol sketched above will achieve a compression rate arbitrarily close
to h(p) ≤ 1 bits per coin flip. You will show in Problem 4.4 that this compression rate h(p) is
optimal. The result that we proved is known as Shannon’s noiseless coding theorem – it is called
“noiseless” since we assume that the communication line from Alice to Bob is perfect. It is also
known as Shannon’s source coding theorem.

In our case, h(75%) = 0.81 as displayed in Fig. 7 – so Alice achieves savings of roughly of
19% in the case of her biased coin.

Since this is a course about symmetries and information theory: What are the symmetries in
the classical data compression scenario? One such symmetry is that the binary entropy function
satisfies h(p) = h(1 − p), corresponding to relabeling H ↔ T. This is certainly expected, since
merely relabeling the symbols cannot impact the optimal compression rate. However, note our
compression protocol breaks this symmetry, since we explicitly compare the relative number of
heads k/n to the probability p! Thus if Alice and Bob apply their compression scheme (that was
designed for p = 75%) to another biased coin with p = 25% then the protocol will fail with high
probability in the first step. In this case there is a simple fix: We simply modify the first step of
the protocol to fail only if k/n is far away from both p and 1 − p. It is clear that this does not
impact the compression rate (we are still sending over the same information!). In Problem 5.4
you will extend this to construct a universal classical data compression protocol at rate R that
works for all data sources where h(p) < R.

When we discuss quantum data compression we will come back to this point and see that
designing a universal quantum data compression protocol is less straightforward and requires a
more careful analysis of the relevant symmetries.

The coin flip example illustrates the traditional core principles of information theory, or
Shannon theory : We are interested in finding optimal asymptotic rates for information processing
tasks such as compression (the task that we have just solved), information transmission over
noisy channels, etc. Quantum information theory has very analogous goals – except that now we
are dealing with quantum information rather than classical information.

67



Figure 8: Illustration of the compression of a quantum information source.

Remark 9.1. In recent years, there has been an increased interest in understanding optimal
information processing rates in non-asymptotic scenarios. This is largely beyond the scope of
these lectures.

9.2 Quantum data compression

We will now discuss quantum data compression in more precise terms. Thus, we consider a
quantum information source that emits pure states ∣ψx⟩ ∈ C2 of a qubit with probabilities px
upon the press of a button (just like previously we obtained a random bit H/T by flipping a coin
flip). We will assume that the qubit states emitted by the source are independent from each
other (i.e., the source has no memory), which means that it emits sequences

∣ψ(x⃗)⟩ = ∣ψx1⟩⊗ . . .⊗ ∣ψxn⟩ ∈ (C2)⊗n

with probabilities
p(x⃗) = px1 . . . pxn .

Similarly to before, our goal in quantum data compression is to design a compression protocol.
This protocol consists of a compressor, which encodes a sequence ∣ψ(x⃗)⟩ ∈ (C2)⊗n into some state
of Rn qubits, and a corresponding decompressor. As before, we can think of R as the compression
rate, but now we are sending over qubits instead of bits! Unlike in the example of the coin, we
cannot in general hope to precisely recover the original state. Instead, the decompressor should
produce a state ∣ψ̃(x⃗)⟩ that has high overlap with the original state (say, on average):

∑
x⃗

p(x⃗)E [∣⟨ψ(x⃗)∣ψ̃(x⃗)⟩∣2] ≈ 1. (9.5)

The average value E[. . . ] refers to the fact that the decompressed state ∣ψ̃(x⃗)⟩ for a given ∣ψ(x⃗)⟩
is not necessarily deterministic (since compression and decompression might involve quantum
measurements, which generally have random outcomes). See Fig. 8 for an illustration. How could
we go about solving this problem?

Let’s first discuss some salient points of this setup. As discussed in Lecture 7, any ensemble
such as {px, ∣ψx⟩} has a corresponding density operator ρ = ∑x px ∣ψx⟩ ⟨ψx∣. In our case, it
describes the average output of our quantum source. It is not hard to see that the density
operator corresponding to the ensemble {p(x⃗), ∣ψ(x⃗)⟩}, which describes n outputs of our quantum
source, is given by

ρ⊗n = (∑
x

px ∣ψx⟩ ⟨ψx∣)
⊗n

=∑
x⃗

p(x⃗) ∣ψ(x⃗)⟩ ⟨ψ(x⃗)∣ (9.6)

It is useful to think of ρ⊗n as the quantum version of an i.i.d. probability distribution (i.e., a
probability distribution of n random variables that are independent and identically distributed).
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At a fundamental level, quantum information theory often reduces to questions about the
asymptotic behavior of a large number of independent copies of a density operator ρ, i.e., in ρ⊗n

for large n (the so-called i.i.d. limit), similarly to what we saw for the classical coin above.
Like any density operator of a single qubit, ρ has two eigenvalues which we might denote by

{p,1 − p}. We stress that the states ∣ψx⟩ emitted by the source need not be orthogonal. This
means that we cannot simply perform a measurement to figure out the sequence of quantum
states emitted by the source, but also that the eigenvalues {p, 1 − p} of ρ need not have anything
to do with the probabilities {px} of the different states in the ensemble. For example, the density
operator 1

2 (∣0⟩ ⟨0∣ + ∣+⟩ ⟨+∣) has eigenvalues around {85%,15%}. From this perspective, it is not
clear that ρ should have any significance for the compression task!

To make progress, remember that the central idea to solve classical data compression was
that there was a relatively small number of typical sequences that occurred most of the time.
In the quantum case, bits get replaced by qubits, so this suggests that we should try to look
for a “small” subspace Hn ⊆ (C2)⊗n such that “typical” states ∣ψ(x⃗)⟩ have high overlap with this
subspace. Let us identify on more formal level what properties this subspace should satisfy by
studying the following proposal for a compression protocol:

Quantum data compression protocol: Let Hn ⊆ (C2)⊗n, with projector Pn.

• Alice performs the projective measurement {Pn, I − Pn}. If the outcome is the latter, she
sends over an arbitrary state ∣ψ̃(x⃗)⟩.

• Otherwise, the post-measurement state in Alice’ laboratory is

∣ψ̃(x⃗)⟩ = Pn ∣ψ(x⃗)⟩
∥Pn ∣ψ(x⃗)⟩∥

∈Hn.

• Since this state lives in subspace Hn only, Alice can send it over to Bob by sending roughly
⌈log(dimHn)⌉ qubits.

• Bob receives the state ∣ψ̃(x⃗)⟩ and uses it as the decompressed state.

Remark. In step one, we send over an arbitrary state when the measurement does not “succeed” –
this is not a problem since we will anyways need to inspect the average overlap squared (9.5) with
the desired state. Instead, Alice could also simply fail and stop the protocol when the measurement
does not succeed, just as in our classical compression protocol. Can you see how the analysis
below needs to be adjusted in this case? (Problem 3.4 could be useful.)

Remark 9.2. It might not be directly obvious how Alice and Bob can actually send over the
state in the last part of the protocol. Clearly, dim(Hn) ≤ dim(C2)⊗⌈log(dimH)⌉, so certainly
m ∶= ⌈log(dimH)⌉ qubits provide enough degrees of freedom. In practice, our two protagonists
would decide on a unitary

U ∶ (C2)⊗n → (C2)⊗n = (C2)⊗m ⊗ (C2)⊗(n−m)

such that any state in Hn gets mapped to a state into the subspace (C2)⊗m ⊗ ∣0 . . .0⟩.
In order to send over the post-measurement state, Alice would first apply U and send over

the first m qubits to Bob. Upon receiving the state, Bob adds the ∣0 . . .0⟩ back in and applies U †.
It is clear that in this way he ends up with the state ∣ψ̃(x⃗)⟩ in his laboratory.
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Let us analyze the compression protocol to determine the properties that the subspace Hn
should satisfy. Clearly, the compression rate that it achieves is

log(dimHn)
n

≤ 1,

so we would like to minimize the dimension of Hn. We will now analyze when the average overlap
squared is close to one, as in (9.5): First, let us denote by

q(x⃗) ∶= Prψ(x⃗)(outcome Pn) = ⟨ψ(x⃗)∣Pn∣ψ(x⃗)⟩ = tr [∣ψ(x⃗)⟩ ⟨ψ(x⃗)∣Pn] (9.7)

the probability of passing the first step of the protocol if the state emitted by the source is ∣ψ(x⃗)⟩
(we used Born’s rule). Then,

∑
x⃗

p(x⃗)E [∣⟨ψ(x⃗)∣ψ̃(x⃗)⟩∣2]

=∑
x⃗

p(x⃗) [q(x⃗)∣⟨ψ(x⃗)∣ Pn ∣ψ(x⃗)⟩∥Pn ∣ψ(x⃗)⟩∥
∣2 + . . . ]

≥∑
x⃗

p(x⃗) [q(x⃗)∣⟨ψ(x⃗)∣ Pn ∣ψ(x⃗)⟩∥Pn ∣ψ(x⃗)⟩∥
∣2]

=∑
x⃗

p(x⃗) [q(x⃗) ∣⟨ψ(x⃗)∣Pn∣ψ(x⃗)⟩
2∣

∥Pn ∣ψ(x⃗)⟩∥2
]

=∑
x⃗

p(x⃗) [q(x⃗)q
2(x⃗)
q(x⃗) ]

=∑
x⃗

p(x⃗)q2(x⃗)

≥ (∑
x⃗

p(x⃗)q(x⃗))
2

.

In the second line, “...” stands for the term that corresponds to the case where we abort after
the first step; we simply lower bound this term by zero. The last step is Jensen’s inequality for
the (convex) square function. But note that

∑
x⃗

p(x⃗)q(x⃗) =∑
x⃗

p(x⃗) tr [∣ψ(x⃗)⟩ ⟨ψ(x⃗)∣Pn] = tr [ρ⊗nPn]

where we used Eqs. (9.6) and (9.7). Thus, we need that tr [ρ⊗nPN ] ≈ 1 in order for the compression
protocol to achieve high fidelity in the sense of Eq. (9.5).

We thus obtain the following important result: Quantum compression is possible at rate R if
we can find a sequence of subspaces Hn ⊆ (C2)⊗n, with projectors Pn, such that

(i) tr [ρ⊗nPn]→ 1,

(ii) 1
n log(dimHn) ≤ R.

Such subspaces are called typical subspaces, in analogy with the typical sequences in the classical
case. Note that this condition only depends on the quantum data source in a weak way, namely
through the density operator ρ. In particular, our compression protocol will work for every
ensemble described by this density operator.

Tomorrow we will discuss how to construct typical subspaces that allow us to compress
arbitrarily close to the optimal asymptotic rate. This rate will again be an entropy – namely, the
so-called von Neumann entropy of the density operator ρ.
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Symmetry and Quantum Information March 6, 2018

Construction of typical subspace, compression and entanglement
Lecture 10 Michael Walter, University of Amsterdam

Yesterday, we discussed the compression of classical and quantum data sources. Let us
briefly revisit the results. We first studied classical data sources that emits bits (coin flips) with
probabilities p and 1 − p and found that the optimal compression rate is given by the Shannon
entropy h(p) = −p log p − (1 − p) log(1 − p). To achieve this, we restricted our consideration to
typical sequences b⃗ = b1 . . . bn ∈ {0,1}n, with k = n(p ± ε) zeros (heads) for some fixed ε > 0. By
the law of large numbers,

Pr(b⃗ typical)→ 1, (10.1)

and we found that there were at most

∑
k∶∣ k

n
−p∣≤ε

2nh(k/n) ≤ (n + 1)2n(h(p)+ε′) (10.2)

typical sequences, and this is what led to a compression rate arbitrarily close to h(p) for sufficiently
small ε and large n.

We then considered quantum data sources, specified in terms of some ensemble with corre-
sponding density operator ρ = ∑x px ∣ψx⟩ ⟨ψx∣. Our main result here was that in order to compress
at rate R, we wanted typical subspaces Hn ⊆ (C2)⊗n, with projectors Pn, such that

(i) tr [ρ⊗nPn]→ 1,

(ii) 1
n log(dimHn) ≤ R for large enough n.

The first condition can be interpreted as requiring that typical states emitted by the source have
high overlap with the subspace Pn, and the second condition states that the compression protocol
will use no more than nR qubits to compress n samples of the source.

10.1 Construction of typical subspaces

How should we go about constructing such typical subspaces? A natural approach is to take the
spectrum decomposition of ρ,

ρ = p ∣ϕ0⟩ ⟨ϕ0∣ + (1 − p) ∣ϕ1⟩ ⟨ϕ1∣ ,

and define

Hn ∶= span{∣ϕb1⟩⊗ . . .⊗ ∣ϕbn⟩ ∶ b⃗ ∈ {0,1}n a typical sequence}

where we include only basis vectors corresponding to typical bitstrings for a classical data source
with probabilities {p,1 − p}.

This is a natural definition, since the vectors ∣ϕb1⟩⊗ . . .⊗ ∣ϕbn⟩ is the eigenbasis of ρ⊗n, which
makes it easy to evaluate the trace tr[ρ⊗nPn]:

tr[ρ⊗nPn] = ∑
b⃗ typical

⟨ϕb1 ⊗ . . .⊗ ϕbn ∣ρ⊗n∣ϕb1 ⊗ . . .⊗ ϕbn⟩ = ∑
b⃗ typical

p#0’s(1 − p)#1’s

= Pr(b⃗ is typical)→ 1.
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In the third step, we recognized the probability of the classical data source emitting a typical
sequence, which goes to one according Eq. (10.1)!

We still need to bound the dimension of these subspaces. But clearly dim(Hn) is just the
number of typical sequences, so it follows from Eq. (10.2) that

1

n
log(dimHn) ≤ R ∶=

log(n + 1)
n

+ h(p) + ε′.

As discussed below Eq. (9.4), the first term goes to zero for large n and we can make the third
term arbitrarily small by choosing ε small enough. Thus we have construct typical subspaces that
allow us to compress a quantum data source at a rate R arbitrarily close to h(p). In Problem 6.2
you will show that this is the optimal rate.

To summarize: Quantum data compression is possible at an asymptotic qubit rate arbitrarily
close to the von Neumann entropy

S(ρ) ∶= h(p)

which is simply the Shannon entropy of the eigenvalues of the density operator. We can also
write

S(ρ) = − tr[ρ log ρ]

using the matrix logarithm. The rate S(ρ) is also optimal. This important result is due to
Schumacher (as well as the result in the next section). As mentione last time, the quantum data
compression protocol that we described last lecture works for all quantum sources described by
the density operator ρ.

Again, we may ask about the symmetries of the quantum data compression problem. Instead
of relabeling zeros and ones, we could perform an arbitrary unitary transformation U on the
states emitted by the source. Such a transformation is reversible and hence should not impact
the compression rate. Indeed, S(ρ) = S(UρU †), since the von Neumann entropy only depends
on the eigenvalues of the density operator. But, again, our compression protocol breaks these
symmetries because the subspaces Hn refer explicitly to the eigenbasis of ρ. This means that
we cannot we apply a protocol constructed for a source described by ρ to a source described
by UρU † and expect that it works with high fidelity. We had a similar issue in the classical case
and found an easy fix. In the quantum case, it is less obvious what to do.

Next week, we will undertake a more careful study of the symmetries of (C2)⊗n and of ρ⊗n

and overcome this challenge. This will not only allow us to construct a universal compression
protocol, but also solve other problems of interest. Specifically, it will allows us to estimate
the estimate the eigenvalues of an unknown density operator, the corresponding von Neumann
entropy, and, finally, the entire density operator.

10.2 Compression and entanglement

At a high level, compression is about minimizing communication. There are other situations
in which we would like to minimize communication, such as in the following task: Suppose we
start out with a large number of copies of a bipartite pure state ∣ΨAE⟩ ∈HA ⊗HE . Alice would
like to transfer her A-systems (which we assume are qubits) over to Bob by sending a minimal
number of qubits. Importantly, they would like to preserve all correlations with the E-systems,
but neither Alice nor Bob have access to the E-systems, but they belong to another party (or
the “environment”) that we will call Eve. See Fig. 9 for an illustration.
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Figure 9: Alice wants to send half of her entangled states ∣ΨAE⟩⊗n over to Bob at qubit rate R.

We will call this task quantum state transfer (sadly, this term is usually used with a different
connotation). It is often referred to as Schumacher compression. Thus, if ∣ψ̃⟩AnEn is the state
after compression and decompression, we would like that

∣ψ̃⟩AnEn ≈ ∣ΨAE⟩⊗n

(say, on average).
Since our goal is to preserve the correlations, we might intuitively expect that the more

entangled the states ∣ΨAE⟩ are, the more communication will be required. Indeed, suppose that
∣ΨAE⟩ = ∣Ψ⟩A ⊗ ∣Ψ⟩E is a product state. In this case, Alice needs not send over any quantum
information at all, since Bob can simply prepare the pure state ∣Ψ⟩ on his side. However, if ∣ΨAE⟩
is entangled then it is not hard to see that communication will be required. (Any state that Bob
prepares on his end alone will necessarily be in a tensor product with Eve’s state.)

Interestingly, quantum state transfer can be implemented by a protocol that is very similar to
our quantum data compression protocol. The key idea is to use typical subspaces for the reduced
density operator

ρA = trE[∣ΨAE⟩ ⟨ΨAE ∣]

and we describe the protocol next:

Protocol for quantum state transfer: Let HA,n ⊆ (C2)⊗n be typical subspace, with
projectors PA,n.

• Alice performs the projective measurement {PA,n, IAn −PA,n}. If the outcome is the latter,
she signals failure.

• Otherwise, the post-measurement state is

∣ψ̃AnEn⟩ = (PA,n ⊗ IE
n) ∣ΨAE⟩⊗n

∥(PA,n ⊗ IEn) ∣ΨAE⟩⊗n∥
∈HA,n ⊗H⊗nE .

• Alice sends over her subsystem HA,n using approximately nS(ρA) qubits (see Remark 9.2
for ).

It is straightforward to analyze this protocol. Using Born’s rule, the probability of passing
the first step of the protocol only depends on the reduced density operator and is given by

Pr(success) = ⟨Ψ⊗nAE ∣PA,n ⊗ IEn ∣Ψ⊗nAE⟩ = tr[ρ⊗nA PA,n]→ 1, (10.3)
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since the PA,n are projectors onto typical subspaces for ρ⊗nA . And assuming we did not fail in the
first step, the overlap between the post-measurement state and the target state is given by

∣⟨Ψ⊗nAE ∣ψ̃AnEn⟩∣2 = ∣⟨ΨAE ∣⊗n
(PA,n ⊗ IEn) ∣ΨAE⟩⊗n

∥(PA,n ⊗ IEn) ∣ΨAE⟩⊗n∥
∣2 =
∣⟨Ψ⊗nAE ∣PA,n ⊗ IEn ∣Ψ⊗nAE⟩∣2

∥(PA,n ⊗ IEn) ∣Ψ⊗nAE⟩∥2

= ⟨Ψ⊗nAE ∣PA,n ⊗ IEn ∣ΨAE⟩⊗n = tr[ρ⊗nA PA,n]→ 1

where the last step is the same calculation as in Eq. (10.3)!
To summarize: Alice can transfer her system to Bob at an asymptotic qubit rate that can

be arbirarily close to S(ρA). This quantity is often called the entanglement entropy of the pure
state ∣ΨAE⟩, denoted

SE(Ψ) ∶= S(ρA) = S(ρE).

Here we used that S(ρA) = S(ρE) as a consequence of the Schmidt decomposition (see Eq. (8.2)).

Remark. The notation here is very unfortunate – the E in SE is short for “entanglement” and
not for Eve’s system. E.g., for a state ∣ΦAB⟩ we would write SE(Φ) = S(ρA) = S(ρB).

Example. If ∣ΨAE⟩ = ∣0⟩A ⊗ ∣0⟩E then SE(Ψ) = 0 – as it should be, given our discussion above.
If ∣ΨAB⟩ = 1√

2
(∣00⟩AB + ∣11⟩AB) is the ebit state, however, then SE = 1, which means that Alice

has to send qubits at a trivial rate of 1 qubit/qubit – in agreement with our intuition that the ebit
is a maximally entangled state.

We thus obtain a second operational interpretation of the von Neumann entropy: It not
only characterizes the optimal quantum compression rate for a quantum data source, but it
also characterizes the minimal rate of qubits that we need to send when transferring part of a
bipartite pure state.

The state transfer problem is a special case of the more general (and more difficult) problem
of quantum state merging, where the receiver already possesses part of the state. We might have
a peek at this in the last week of class.

Remark. It is possible to show that any protocol for the state transfer task can be used to
compress arbitrary quantum sources described by the density operator ρA.

10.3 Entanglement transformations

At the end of this lecture, we briefly talked some more about entanglement more generally. For
pure states, ∣ΨAB⟩ ≠ ∣ψA⟩ ⊗ ∣ψB⟩ means that the state is entangled. But how can be compare
and quantify different states in their entanglement? One approach is to assign to each state
some arbitrary numbers that we believe reflect aspects of their entanglement properties – e.g.,
the entanglement entropy SE from above, the largest eigenvalue of the reduced density matrix
from Problem 4.1, or simply the collection of all eigenvalues of ρA or ρB (sometimes called the
entanglemen spectrum). Yet, this approach might perhaps seem somewhat ad hoc and so is (a
priori) not completely satisfactory.

A more operational approach would be to compare two states ∣ΦAB⟩ and ∣ΨAB⟩ by studying
whether one can be transformed into the other: What family of operations should we consider
in such a transformation? Since our goal is compare entanglement, we should only allow
for operations that cannot create entanglement from unentangled states. We already briefly
mentioned such a class of operations in Remark 8.3. It is LOCC, short for Local Operations
and Classical Communication. Here, we imagine that Alice and Bob each have their separate
laboratory and we allow the following operations:
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• Local operations, i.e., arbitrary quantum operations that can be done on Alice’ and Bob’s
subsystems. We allow any combination of unitaries, adding auxiliary systems, performing
partial traces, and measurements.

• Classical communication, i.e., Alice and Bob are allowed to exchange measurement outcomes.
Thus, Bob’s local operations can depend on Alice’s previous measurement outcomes, and
vice versa.

Thus we are interested in whether

∣ΨAB⟩
LOCCÐ→ ∣ΦAB⟩ .

If yes, then we could say that ∣ΨAB⟩ is at least as entangled as ∣ΦAB⟩ – indeed, the former is as
useful as the latter for any nonlocal quantum information processing task, since we can always
convert first ∣ΨAB⟩ into ∣ΦAB⟩ when required.

Remark. Note that the setup here is very different from quantum data compression – there, we
wanted to minimize the amount of quantum communication sent. Here, we do not allow any
quantum communication, and classical communication comes for free.

The exact interconversion problem for pure states was solved by Nielsen. However, there are
many parameters – namely all the eigenvalues of ρA and of ρB matter. It turns out that the
asymptotic theory simplifies tremendously, and we will very briefly discuss the main results.

The key idea is to reduce the problem to studying the conversion between a given state ∣ΨAB⟩
and a single resource state (a “universal currency” of entanglement of sorts). This resource state
is the ebit state ∣Φ+⟩ = 1√

2
(∣00⟩ + ∣11⟩)!

Thus we are interested in the following two problems: First, given n copies of a state ∣ΨAB⟩,
convert them by LOCC into as many ebits as possible:

∣ΨAB⟩⊗n
LOCCÐ→ ≈ ∣Φ+⟩⊗Rn

Just as in the case of data compression, we are interested in the maximal rate R that can be
achieved with error going to zero for n→∞. This is called the distillable entanglement ED(Ψ)
of the state ∣ΨAB⟩.

Second, given as few ebits as possible, convert them by LOCC into n copies of ∣ΨAB⟩:

∣Φ+⟩⊗Rn LOCCÐ→ ≈ ∣ΨAB⟩⊗n

Here we are interested are interested in the minimal rate R that can be achieved with error going
to zero for n→∞. This is called the entanglement cost EC(Ψ) of the state ∣ΨAB⟩.

It is intuitively plausible that EC(Ψ) ≥ ED(Ψ), i.e., that we cannot “create entanglement
out of nothing”. The main result of the theory is the following: The entanglement cost and the
distillable entanglement are equal, and given by the entanglement entropy discussed above!

EC(Ψ) = ED(Ψ) = SE(Ψ)

Remark. You might wonder how the above story generalizes to mixed states ρAB. It turns out
that in this case the entanglement theory is much more complicated. We already saw hints of this
in Section 8.2 where we mentioned that even deciding whether a given state ρAB is separable or
entangled is in general an NP-hard problem. In addition, while the same definitions can be made
as above, there are many new phenomena. For example, in general we have that EC(ρ) > ED(ρ),
meaning that the conversion via ebits is in general asymptotically irreversible! In fact, there
are entangled mixed states states such that EC(ρ) > 0 while ED(ρ) = 0. We call them bound
entangled states – these are states that are entangled but no ebits can be distilled from them!
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Symmetry and Quantum Information March 12, 2018

Spectrum estimation, i.i.d. quantum information
Lecture 11 Michael Walter, University of Amsterdam

Today, we will start developing some new machinery for working with i.i.d. copies of a
quantum state, i.e.,

ρ⊗n on (Cd)⊗n

where ρ is an arbitrary density operator.

11.1 Spectrum estimation

Our motivation throughout today’s lecture will be the following estimation problem: We would
like to estimate the eigenvalues of an unknown density operator ρ, given n copies ρ⊗n. That is, if
p1 ≥ ⋅ ⋅ ⋅ ≥ pd denote the eigenvalues of ρ then we would like to define a measurement {Qp̂} such
that, when we measure on ρ⊗n, we obtain outcomes p̂1 ≥ ⋅ ⋅ ⋅ ≥ p̂d that are a good estimate for the
true eigenvalues, as illustrated below:

This task is known as the spectrum estimation problem and it was first solved by Keyl and
Werner. It is an easier problem than estimating the full density operator ρ, and it allows us
to focus on the key difference between pure and mixed states – their eigenvalue spectrum. As
a direct corollary, we will be able to estimate the von Neumann entropy S(ρ) of an unknown
quantum source (since this is a function of the eigenvalues only). We will spend the rest of
today’s lecture solving the spectrum estimation problem.

The tools that we will develop in the course of solving this problem will be prove useful for
working with asymptotic quantum information more generally. In Lecture 12, we will use them to
construct universal typical subspaces, which work for any density operator ρ with given spectrum.
This will allow us to derive universal protocols for quantum data compression and quantum state
transfer – the two problems discussed last week in Lectures 9 and 10. In Lecture 13, we will also
see how one can estimate an arbitrary unknown quantum state ρ from ρ⊗n, thereby solving a
task that is also known as quantum state tomography.

Symmetries of the spectrum estimation problem

If ρ is a quantum state on Cd then the state ρ⊗n is a quantum state on (Cd)⊗n. As discussed
in Example 5.1, this space is a representation for two groups: (i) the permutation group Sn,
with representation operators Rπ, and (ii) the unitary group U(d), with representation operators
TU = U⊗n.

Now, the operator ρ⊗n is permutation-invariant as defined last time, i.e., it commutes with
permutations:

[Rπ, ρ⊗n] = 0
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for all π ∈ Sn. We can verify this explicitly on a product basis:

Rπρ
⊗n ∣x1, . . . , xn⟩ = Rπ (ρ ∣x1⟩⊗ . . .⊗ ρ ∣xn⟩) = ρ ∣xπ−1⟩⊗ . . .⊗ ρ ∣xπ−1⟩

= ρ⊗n(∣xπ−1⟩⊗ . . .⊗ ∣xπ−1⟩) = ρ⊗nRπ ∣x1, . . . , xn⟩ .

Remark (Warning). Only when ρ = ∣ψ⟩ ⟨ψ∣ is a pure state is ρ⊗n = ∣ψ⟩⊗n ⟨ψ∣⊗n an operator on
the symmetric subspace. We explored this at lengths in Lectures 4 to 8. However, as soon as ρ is
a mixed state, this is no longer the case! A simple example is the maximally mixed state τ = I/d.
Clearly, τ⊗n = I/dn is supported on all of (Cd)⊗n.

On the other hand, ρ⊗n in general does not commute with the action of the unitary group:

U⊗nρ⊗nU †,⊗n = (UρU †)⊗n

which amounts to replacing ρ ↦ UρU †. This operation changes the eigenbasis, but leaves the
eigenvalues the same. In other words, while the permutation symmetry is a symmetry of the
state ρ⊗n, the unitary symmetry is a symmetry of the problem that we are trying to solve! This
suggests that both symmetries should play an important role, and it prompts us to investigate
the representation (Cd)⊗n more closely.

11.2 Warmup: The swap test

Suppose we are just given two copies of the unknown quantum state, i.e., ρ⊗2. This is a density
operator on

(Cd)⊗2 = Sym2(Cd)⊕⋀2(Cd).

Both the symmetric and the antisymmetric subspace are irreducible representations. (for the
symmetric subspace, we discussed this in Lecture 6; the antisymmetric subspace can be treated
completely analogously).

The permutation group S2 has just two elements: the identity permutation and the nontrivial
permutation π = 1↔ 2. The operator corresponding to the latter is known as the swap operator

F = R1↔2 =∑
a,b

∣a, b⟩ ⟨b, a∣ .

which you will recognize from Problem 4.3. It commutes both with the action of U(d) (since we
know that [U⊗n,Rπ] = 0 for all U and π) as well as with the action of S2 (any operator commutes
with itself and with the identity matrix). Since the projector onto the symmetric subspace can
be written as Π2 = 1

2(I + F ), it follows that the projective measurement

{P1 ∶= Π2, P0 ∶= I −Π2}

likewise commutes with the actions of U(d) and S2 – so we have identified a projective measure-
ment with the desired symmetries!

Note that F = P1 − P0 is just the spectral decomposition of the swap operator. Using Schur’s
lemma as in Problem 3.3, you can verify that there is no more fine-grained measurement with
these symmetries.

Is the measurement {P1, P0} at all informative? To see this, we calculate the probability of
the “1” outcome:

Prρ⊗2(outcome 1) = tr [ρ⊗2Π2] = tr [ρ⊗2
1

2
(I + F )] = 1

2
(1 + tr [ρ⊗2F ]) = 1

2
(1 + trρ2) ,

78



Figure 10: By measuring {P1, P0} on N = n/2 independent copies of ρ⊗2, we can estimate the
purity of the quantum state via Eq. (11.1).

where we used the “swap trick” tr[F (σ ⊗ γ)] = tr[σγ] from Problem 4.3 in the last step. The
quantity trρ2 is called the purity of ρ, since it is equal to 1 only if the state ρ is a pure state (we
discussed this in Lecture 7).

The important point, however, is that since ρ has eigenvalues p1, . . . , pd then trρ2 = ∑di=1 p2i ,
so

Prρ⊗2(outcome 1) = 1

2
(1 +

d

∑
i=1
p2i )

and we conclude that this simple measurement already allows us to learn something nontrivial
about the eigenvalues of ρ. It is also known as the swap test. Note that for qubits (d = 2) the
swap test provides a complete solution (since p1 +p2 = 1 we can determine p1 and p2 = 1−p1 from
trρ2 = p21 + p22)!

Just to be perfectly clear about the interpretation of this result: When performing the
projective measurement {P1, P0}, the measurement outcome is either 1 or 0. Only when repeated
N times on independent copies of ρ⊗2 will we find that

#{outcome=1}
N

≈ Prρ⊗2(outcome 1) = 1

2
(1 +

d

∑
i=1
p2i ) (11.1)

up to error O(1/
√
N). Thus we only obtain a good estimate when we apply the swap test to a

number N of pairs ρ⊗2, i.e., when given ρ⊗n for large n = 2N (Fig. 10).

While the swap test is perfectly fine for the purposes of estimating the purity, it is somewhat
unsatisfactory in two regards: (i) it only works for d > 2 and (ii) measuring on “blocks of ρ⊗2”
breaks the permutation symmetry of the problem.

In the following, we will discuss a different solution which fully exploits the symmetries of the
problem and generalizes readily to any d. Along the way we will discover some important tools
that will have further application in the remainder of this course. For simplicity, we restrict to
the case of qubits (d = 2) since we studied the representation theory of SU(2) before in Lecture 7.

11.3 Decomposing the n-qubit Hilbert space

We start by decomposing the Hilbert space of n qubits into irreducible representations of SU(2).
From Section 7.2 we know that

(C2)⊗n ≅ Symk1(C2)⊕ Symk2(C2)⊕ . . .⊕ Symkm(C2)

for certain integers k1, . . . , km ≥ 0 that we still need to determine (one of them should be ki = n,
corresponding to the symmetric subspace Symn(C2) ⊆ (C2)⊗n). It is convenient to repackage
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this in the following way:

(C2)⊗n ≅⊕
k

⎛
⎜⎜⎜
⎝
Symk(C2)⊕ . . .⊕ Symk(C2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m(n, k) times

⎞
⎟⎟⎟
⎠
≅⊕

k

Symk(C2)⊗Cm(n,k)

In the first step, we reordered the symmetric subspaces according to their type (k), and in the
second step we used that, for any representation H, H⊗Cm ≅H⊕ . . .⊕H (m copies). Just to
be sure that you remember: The above notation means that there exist unitary intertwiners that
map the representation operators as follows:

U⊗n ≅⊕
k

(T (k)U ⊕ . . .⊕ T (k)U ) ≅⊕
k

T
(k)
U ⊗Cm(n,k) =

⎡⎢⎢⎢⎢⎢⎢⎣

T
(0)
U ⊗ ICm(n,0)

T
(1)
U ⊗ ICm(n,1)

⋱

⎤⎥⎥⎥⎥⎥⎥⎦

.

We discussed this at length in class and I added a summary to Remark 5.5.
Importantly, the above considerations only hold for U ∈ SU(2). How about a general unitary

U ∈ U(2)? In this case, U/
√
detU ∈ SU(2), so it is easy to deduce the action. We find that

U⊗n = (detU)n/2 ( U√
detU

)
⊗n

≅ (detU)n/2⊕
k

T
(k)

U√
detU

⊗ Im(n,k) = (detU)n/2⊕
k

(detU)−k/2 T (k)U ⊗ Im(n,k)

=⊕
k

(detU)(n−k)/2 T (k)U
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶T (n,k)
U

⊗Im(n,k).

Here we used that, since T (k)U is given by the restriction of U⊗k to the symmetric subspace, it is
homogeneous of degree k in U .

Let us write Vn,k ∶= Symk(C2) for the symmetric subspace equipped with the operators
{T (n,k)U }. This defines a representation of U(2) which is irreducible (since it is even irreducible
if we restrict to SU(2)). Importantly, Vn,k /≅ Vn′,k if n ≠ n′ (since in this case operators with
nonzero determinant will in general act in a different way).

Example 11.1. For n = 2, we have that

(C2)⊗2 = Sym2(C2)⊕C ∣Ψ−⟩ ≅ V2,2 ⊕ V2,0.

Indeed, V2,2 = Sym2(C2) as a U(2)-representation, while you showed in Problem 2.1 that (U ⊗
U) ∣Ψ−⟩ = det(U) ∣Ψ−⟩; the latter is just the way that T (2,0)U acts on V2,0.

We thus obtain the following decomposition of the n-qubit Hilbert space as a representations
of U(2):

(C2)⊗n ≅⊕
k

Vn,k ⊗Cm(n,k),

U⊗n ≅⊕
k

T
(n,k)
U ⊗ Im(n,k). (11.2)
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Note that both the left-hand and the right-hand side of Eq. (11.2) make syntactical sense for
arbitrary operators, not just for unitaries U . In fact, the equality is true for arbitrary operators!
We summarize this important fact: For every operator A on C2,

A⊗n ≅⊕
k

T
(n,k)
A ⊗ Im(n,k), (11.3)

where

T
(n,k)
A ∶= (detA)(n−k)/2 T (k)A . (11.4)

We will briefly sketch how Eq. (11.3) follows from Eq. (11.2). First, since the set of invertible
matrices is dense and both sides of the equation are continuous, we may assume without loss of
generality thatX is invertible, so we can writeA = eiM . Now parametrizeM = z1I+z2X+z3Y +z4Z
by a complex vectors z ∈ C4. Then both the left-hand side and the right-hand side of Eq. (11.3)
are holomorphic functions of z ∈ C4. Note note that, for z ∈ R4, M is Hermitian, so eiM is unitary,
and hene Eq. (11.3) reduces to Eq. (11.2). But any two multivariate holomorphic functions that
agree on the reals must be equal – this concludes the proof of Eq. (11.3). (Another approach
would be to work with the groups SL(2) and GL(2) throughout.)

In particular, we can apply Eq. (11.3) to density operators. We restate the resulting formula,
since provides us with a very useful normal form of an i.i.d. quantum state ρ⊗n:

ρ⊗n ≅⊕
k

T (n,k)ρ ⊗ Im(n,k), (11.5)

We will use this momentarily.

11.4 Solution of the spectrum estimation problem

How does this help us to solve the spectrum estimation problem? Recall that we are looking for
a measurement that commutes with both the action of SU(2) and Sn. Let us write Pn,k for the
orthogonal projection onto the k-th direct summand in Eq. (11.2). This seems like a plausible
candidate! Indeed, it is plain from Eq. (11.2) that Pn,k commutes with the action of the unitary
group. Does Pn,k also commute with the action of Sn? Yes, this in fact follows from Schur’s
lemma – we will discuss this next time in a more general context. Thus, we have found the
desired candidate measurement!

Remark. Note that this measurement generalizes the swap test discussed in Section 11.2, since
for n = 2 we have that P2,2 = Π2 and P2,0 = I −Π2 (see Example 11.1).

Remark. In physics terminology, the measurement {Pn,k} measures the total spin j = k/2.
In your quantum mechanics class you might have discussed the quadratic Casimir operator of
SU(2) – this is an observable with eigenvalues proportional to j(j + 1/2), so it can also be used
to measure j.

In the remainder of today’s lecture, we will analyze the projective measurement {Pn,k} on
ρ⊗n. That is, we would like to compute the probabilities

Prρ⊗n(outcome k) = tr [ρ⊗nPn,k] . (11.6)

Note that these probabilities remain unchanged if we substitute ρ ↦ UρU † – this holds
because Pn,k commutes with U⊗n. Since we can always diagonalize ρ by a unitary, we may
therefore assume that ρ already a diagonal matrix,

ρ = (p
1 − p) (11.7)
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Figure 11: By iterating the Clebsch-Gordan rule, we obtain a decomposition of (C2)⊗n into
irreducible representations of U(2). The multiplicity m(n, k) is equal to the number of paths
from (0,0) to (n, k), where at each step we move to the right and either up or down (unless
k = 0).

with p ≥ 1 − p, i.e., p ∈ [12 , 1]. Our goal will be to show that (11.6) is exponentially small in n for
most outcomes k – unless when we can obtain a good estimate of the spectrum from k. We will
later see that p̂ ∶= 1

2
(1 + k

n
) will provide such an estimate.

In view of Eq. (11.5), we may compute the probability of measurement outcomes in the
following way:

tr [ρ⊗nPn,k] = tr [T (n,k)ρ ⊗ Im(n,k)] =m(n, k) tr [T (n,k)ρ ] , (11.8)

where we used that by definition Pn,k projects onto the k-th direct summand. We will now
explain how to bound both factors in Eq. (11.8).

First we consider the number m(n, k), which we remember denote the multiplicity of Vn,k in
(C2)⊗n. Equivalently, we can work with SU(2); then m(n, k) denotes the number of times that
Symk(C2) appears in (C2)⊗n. We discussed this problem already in Lecture 7 and saw that we
could solve this in a recursive fashion. The key ingredient was the Clebsch-Gordan rule (7.5),
which states that

Symk(C2)⊗C2 ≅
⎧⎪⎪⎨⎪⎪⎩

Symk+1(C2)⊕ Symk−1(C2) if k > 0
C2 = Sym1(C2) if k = 0,

(11.9)

and this allowed us to successively decompose (C2)⊗n:

(C2)⊗1 = C2 = Sym1(C2), so

(C2)⊗2 = Sym1(C2)⊗C2 ≅ Sym2(C2)⊕ Sym0(C2), so

(C2)⊗3 = (Sym2(C2)⊕ Sym0(C2))⊗C2 = Sym3(C2)⊕ Sym1(C2)⊕ Sym1(C2), etc.

E.g., for n = 3, we find that m(3,3) = 1 and m(3,1) = 2, while all other m(3, k) = 0.
This process is visualized in Fig. 11 and the general result is as follows: The multiplicity

m(n, k) of Vn,k in (C2)⊗n is precisely equal to the number of paths from (0, 0) to (n, k) in Fig. 11.
In particular, we see that m(n,n) = 1 (there is only a single path). Moreover, m(n, k) > 0 iff
n − k is an nonnegative even number (so that the exponent of the determinant in Eq. (11.4) is
always a nonnegative integer).

How can we estimate the number of paths? Any path can be specified by a sequence of in total
n “ups” and “downs”. If u is the number of “ups” then n − u is the number of “downs”. Therefore,
we must have that u − (n − u) = k in order for the path to end at (n, k). Thus, u = (n + k)/2
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is fixed and we see that there are at most ( n
(n+k)/2) many paths. (This provides only an upper

bound, because paths that go below zero are invalid.) As a consequence, we find that

m(n, k) ≤ ( nn+k
2

) ≤ 2nh(
n+k
2n
) = 2nh(p̂), (11.10)

where we introduced

p̂ ∶= n + k
2n
= 1

2
(1 + k

n
) ∈ [12 ,1].

The last inequality in Eq. (11.10) is precisley the upper bound (9.2) on the binomial coefficients
in terms of the binary Shannon entropy that we derived when compressing coin flips in Lecture 9.
Thus, the multiplicites m(n, k) grow at most exponentially, with exponent is given by precisely
by the binary Shannon entropy of p̂!

We still need to compute the right-hand side trace in Eq. (11.10). In view of Eq. (11.4), this
reduces to a trace over the symmetric subspace, which we can compute in our favorite basis (6.2):

tr [T (n,k)ρ ] = (detρ)(n−k)/2 tr [T (k)ρ ] = p(n−k)/2(1 − p)(n−k)/2
k

∑
m=0
⟨ωm,k−m∣ρ⊗k∣ωm,k−m⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=pm(1−p)k−m≤pk

≤ (k + 1)p(n+k)/2(1 − p)(n−k)/2 ≤ (n + 1)p(n+k)/2(1 − p)(n−k)/2

= (n + 1)2n(p̂ log p+(1−p̂) log(1−p))

(11.11)

For the underbraced inequality, we used that ρ = diag(p,1 − p) with p ≥ 1 − p (Eq. (11.7)).
If we plug Eqs. (11.10) and (11.11) back into Eq. (11.8) then we obtain the following bound

on the probability of outcomes:

Prρ⊗n(outcome k) = tr [ρ⊗nPn,k] ≤ (n + 1)2−nδ(p̂∥p), (11.12)

where we have introduced the binary relative entropy

δ(p̂∥p) = p̂ log p̂
p
+ (1 − p̂) log 1 − p̂

1 − p. (11.13)

The relative entropy is an important quantity in information theory and statistics. The point
now is that the relative entropy is a distance measure between probability distributions: It is
nonnegative and δ(p̂∥p) = 0 if and only if p = p̂. (Note however that it is not a metric – e.g., it is
not symmetric under exchanging p↔ p̂.) More quantitatively, the relative entropy satisfies the
following inequality, a special case of the so-called Pinsker’s inequality :

δ(p̂∥p) ≥ 2

ln 2
(p̂ − p)2 (11.14)

As a consequence, the probability in Eq. (11.12) is exponentially small unless p̂ ≈ p!
This allows us to solve the spectrum estimation problem for qubits: Given ρ⊗n, perform the

projective measurement {Pn,k}. Upon outcome k, output p̂ ∶= 1
2
(1 + k

n
) as the estimate of the

maximal eigenvalue of ρ. Then:

Pr(∣p̂ − p∣ ≥ ε) = ∑
k∶∣p̂−p∣≥ε

Prρ⊗n(outcome k) ≤ ∑
k∶∣p̂−p∣≥ε

(n + 1)2−nδ(p̂∥p)

≤ ∑
k∶∣p̂−p∣≥ε

(n + 1)2−n
2

ln2
ε2 ≤ (n + 1)22−n

2
ln2

ε2 ,

where we used Eqs. (11.12) and (11.14) and the fact that there are certainly no more than n + 1
possible values for k. The right-hand side decreases exponentially with n. This means that p̂ ≈ p
with very high probability. Success at last!
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Remark. In Lecture 14, we will discuss how to implement the spectrum estimation measurement
concretely by a quantum circuit (see also Remark 12.1). Spectrum estimation has been realized
experimentally by Beverland et al.
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Universal typical subspaces, Schur-Weyl duality
Lecture 12 Michael Walter, University of Amsterdam

Yesterday we solved the quantum estimation task by studying the symmetries of the problem.
We found that the n-qubit Hilbert space can be decomposed as

(C2)⊗n ≅⊕
k

Vn,k ⊗Cm(n,k) (12.1)

X⊗n ≅⊕
k

T
(n,k)
X ⊗ Im(n,k) (12.2)

not only for unitaries but in fact for arbitrary operators X on C2. We then considered the
orthogonal projections Pn,k onto the summands in Eq. (12.1). For large n, we found that if we
perform the projective measurement {Pn,k} on ρ⊗n then

p̂ ∶= 1

2
(1 + k

n
) (12.3)

provides a good estimate of p, the largest eigenvalue of the unknown density operator ρ. In
quantitative terms,

Pr(∣p̂ − p∣ ≥ ε) ≤ (n + 1)22−nδ(p̂∥p) ≤ (n + 1)22−n
2

ln2
ε2 , (12.4)

where δ(p̂∥p) denotes the relative entropy (11.13).

12.1 Universal typical subspaces and protocols

There is another interpretation of what we achieved above. For fixed ε > 0, consider the orthogonal
projection

Pn ∶= ∑
k∶∣p̂−p∣<ε

Pn,k (12.5)

on all summands k in Eq. (12.1) for which ∣p̂− p∣ < ε (recall from Eq. (12.3) that we think of p̂ as
a function of k). Then Eq. (12.4) implies that

tr [Pnρ⊗n] = 1 −Pr(∣p̂ − p∣ ≥ ε) ≥ 1 − (n + 1)22−n
2

ln2
ε2 → 1

for large n. This means that the Hn are typical subspaces!
What is the corresponding rate? On the other hand, Pn is a projector onto a subspace

Hn ⊆ (C2)⊗n of dimension

dimHn = ∑
k∶∣p̂−p∣<ε

dim(Vn,k)m(n, k) ≤ ∑
k∶∣p̂−p∣<ε

(k + 1)2nh(p̂) ≤ ∑
k∶∣p̂−p∣<ε

(k + 1)2n(h(p)+ε′)

≤ (n + 1)22n(h(p)+ε′).

The first inequality is Eq. (11.10) and in the second we used that ∣p̂ − p∣ < ε ensures that
∣h(p̂) − h(p)∣ < ε′ for some ε′ that depends only on ε (and which can be made arbitrarily small
by choosing ε sufficiently small, by continuity of the binary entropy function). Thus, the rate
of the typical subspaces, 1

n log dimHn, is arbitrarily close to h(p) = S(ρ), the von Neumann
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entropy of ρ. This is of course something that we already achieved in Lecture 10. But note
that the only input to the construction was p, as is plain from Eq. (12.5). This means that we
have constructed universal typical subspaces, which can be used for any quantum state whose
eigenvalues are {p,1 − p}!

As a direct consequence, we obtain universal protocols for quantum compression and quantum
state transfer that work for any quantum state with fixed spectrum. Simply take the protocols
in Lectures 9 and 10 and replace the typical subspaces used therein (which were constructed in
terms of the eigenbasis of ρ) by the universal typical subspaces constructed above!

Remark. It is not hard to show that by a simple variant of this construction one even obtains
compression protocols that, for a given target rate R, work for any qubit source whose density
operator satisfies S(ρ) < R (and similarly for quantum state transfer). You discussed this in
Problem 5.4 for classical data compression and I will leave the quantum case as an exercise to
you. This universality is one of the main advantages of the symmetries-based approach.

12.2 Schur-Weyl duality

Let us discuss the mathematical machinery that we developed yesterday in some more detail.
Our start point is the decomposition (12.1) of the n-qubit Hilbert space as a U(2)-representation,
restated for your convenience:

(C2)⊗n ≅⊕
k

Vn,k ⊗Cm(n,k) (12.6)

X⊗n ≅⊕
k

T
(n,k)
X ⊗ Im(n,k) (12.7)

So far, the Hilbert spaces Cm(n,k) were simply vectors spaces.

Remark 12.1. So far, we have simply argued on abstract grounds that the Hilbert space of n
qubits can be decomposed in the form (12.6). Here, the notation ≅ means that there exists a
unitary intertwiner from the left-hand side to the right-hand side. But if we want to implement,
e.g., spectrum estimation in practice, we need to know what this unitary operator looks like. In
other words, we need to find a unitary operator that implements the transformation from the
product basis

∣x1, . . . , xn⟩ = ∣x1⟩⊗ . . .⊗ ∣xn⟩
to a new basis (the “Schur basis”)

∣k, i, j⟩
where k ∈ {. . . , n − 2, n}, i ∈ {−k, . . . , k − 2, k}, j ∈ {1, . . . ,m(n, k)}. Note that the right-hand
side is not a tensor product of three spaces, because the allowed values for i and j depend on k.
However, we can certainly embed it into a larger space where ∣k, i, j⟩↦ ∣k⟩⊗ ∣i⟩⊗ ∣j⟩ gets mapped
to a product basis vector. In Lecture 14 we will learn how to implement this transformation –
called the quantum Schur transform – by a quantum circuit (see also Remark 12.3 below).

However, we can also consider (C2)⊗n as a representation of the symmetric group Sn. Since
[Rπ, U⊗n] = 0, Schur’s lemma (Lemma 5.6) implies that

Rπ ≅⊕
k

IVn,k
⊗R(n,k)π (12.8)

for some operators R(n,k)π on Cm(n,k). This is a consequence of the following result, which
generalizes part (ii) of Schur’s lemma:
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Lemma 12.2. Let {Vλ}λ∈Λ a collection of pairwise inequivalent irreps of some group G, with Λ
an arbitrary index set, and m(λ) and n(µ) nonnegative integers for λ,µ ∈ Λ.

(i) Let M ∶Vλ ⊗Cm(λ) → Vµ ⊗Cn(µ) be an intertwiner. If λ ≠ µ, then M = 0. If λ = µ, then M
is of the form M = IVλ ⊗Mλ for some operator Mλ∶Cm(λ) → Cn(λ).

(ii) Any intertwiner M ∶⊕λ Vλ ⊗ Cm(λ) → ⊕µ Vµ ⊗ Cn(µ) is of the form M = ⊕λ IVλ ⊗Mλ,
with Mλ as above.

Proof. This is a somewhat painful exercise in applying Schur’s lemma.

(i) For every i = 1, . . . , n(µ) and j = 1, . . . ,m(λ), consider the “block”

Mij ∶= (IVµ ⊗ ⟨i∣)M (IVλ ⊗ ∣j⟩) .

This is an operator (!), and in fact an intertwiner Vλ → Vµ. These are irreducible represen-
tations, so Schur’s lemma applies. If λ ≠ µ then the irreps are inequivalent, hence Mij = 0,
hence M = 0. If λ = µ then part (ii) of Schur’s lemma shows that Mij ∝ IVλ . Define an
operator Mλ∶Cm(λ) → Cn(λ) by Mij = ⟨i∣Mλ∣j⟩ IVλ . Then

M =∑
i,j

Mij ⊗ ∣i⟩ ⟨j∣ =∑
i,j

IVλ ⊗ ∣i⟩ ⟨i∣Mλ∣j⟩ ⟨j∣ = IVλ ⊗Mλ.

(ii) Apply part (i) to each “block” of M .

Remark. In class we only discussed the special case where m(λ) = n(λ) for all λ (but the more
general statement is proved identically, as you saw above).

If we apply part 12.2 of the lemma to G = U(2), H = (C2)⊗n then we obtain Eq. (12.8). In
particular, this verifies that the Rπ commute with the projections Pn,k onto the different sectors,
as we claimed in the last lecture. Moreover, since the {Rπ} form a representation, the operators
{R(n,k)π } turn the spaces Cm(n,k) into representations of Sn. Let us denote these representations
by Wn,k. It turns out that the Wn,k are irreducible and pairwise inequivalent representations
of Sn! We will prove this at the end of this section.

Remark 12.3. Note that we gave no intrinsic definition of the Sn-representations Wn,k. While
the dimensions m(n, k) are uniquely determined, there is more than one intertwiner (12.6)
(how many? see the variant of Schur’s lemma that we derive in Lemma 12.2 below). However,
any choice of intertwiner will yield an equivalent Sn-representation. This is because once the
intertwiner was fixed, the operators R(n,k)π were uniquely defined in terms of the permutation
action on (C2)⊗n. It is a useful exercise to work this out in some more detail. The representations
Wn,k can also be defined without reference to (C2)⊗n – they are called Specht modules.

Note, however, that the way that we counted m(n, k) in Section 11.4 gives rise to a less
ambiguous definition of an intertwiner (12.6). Indeed, recall that m(n, k) counts the number
of paths in Fig. 11, and that each path corresponds to following the Clebsch-Gordan decomposi-
tion (7.5) such that we arrive at a copy of the irreducible representation Vn,k. For different paths,
these are orthogonal copies are orthogonal (as follows from the unitarity of the Clebsch-Gordan
decomposition). Moreover, note that the intertwiner in the Clebsch-Gordan decomposition is
unique up to phases (this again follows by Lemma 12.2 below). As a consequence, this procedure
identifies an intertwiner (12.6) which is uniquely determined up to a diagonal matrix. We will
explain this more clearly in Lecture 14 and use it to derive a quantum circuit for this intertwiner,
called the quantum Schur transform!
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Thus, we obtain the following decomposition of the Hilbert space of n qubits:

(C2)⊗n ≅⊕
k

Vn,k ⊗Wn,k (12.9)

which holds as a representation of both U(2) and Sn. The spaces {Vn,k} and {Wn,k} are pairwise
inequivalent, irreducible representations of U(2) and of Sn, respectively. Equation (12.9) shows
that they are “paired up” perfectly in the n-qubit Hilbert space. This is a famous result known
as Schur-Weyl duality. In Problem 6.3 you will see how to explicitly realize this isomorphism
and construct an intertwiner that implements (12.9) for n = 3.

Schur-Weyl duality has a number of important consequences. For one, it implies that any
operator that commutes with both the action of U(2) and the action of Sn is necessarily a linear
combination of the projections

Pn,k ≅⊕
k′
δk,k′IVn,k

⊗ IWn,k
.

You can see this by applying Lemma 12.2 to each of the two group actions and comparing the
result: Any operator that commutes with the U⊗n must have the form ⊕k IVn,k

⊗ Yk, while any
operator that commutes with the Rπ must have the form⊕kXk⊗IWn, . But Xk⊗IWn,k

= IVn,k
⊗Yk

holds if and only if Xk ∝ IVn,k
and Yk ∝ IWn,k

. It follows that an operator that commutes with
both group actions is necessarily a linear combination of the Pn,k, as we claimed. In particular,
this means that {Pn,k} is the most fine-grained projective measurement that has both symmetries
of the spectrum estimation problem!

Remark 12.4. We can also interpret Eq. (12.9) as the decomposition of (C2)⊗n with respect to the
product group G = U(2)×Sn. Each Vn,k ⊗Wn,k is an irreducible representation of G (this follows
from the argument just given). Conversely, any irreducible representation of the product group is
a tensor product of an irreducible U(2)-representation with an irreducible Sn-representation (a
pleasant exercise using Schur’s lemma).

Proof of Schur-Weyl duality

We still need to show that the Wn,k are irreducible and pairwise inequivalent. We first prove a
useful lemma (for general d, not just d = 2):

Lemma 12.5. Let Y be an operator on (Cd)⊗n that commutes with Rπ for every π ∈ Sn. Then
Y can be written as a linear combination of operators of the form X⊗n.

We will give two proofs – one concrete and one abstract proof.

First proof. Since Y = ∑π∈Sn
RπY R

†
π, it suffices to show that any operator of the form

∑
π∈Sn

RπZR
†
π

can be writen as a linear combination of X⊗n’s. Since any operator Z can be written as a linear
combination of operators of the form Z1 ⊗ . . .⊗Zn, it suffices to prove the claim for a single such
Z = Z1 ⊗ . . .⊗Zn. Now we can use the following trick

∂s1=0 . . . ∂sn=0 (
n

∑
i=1
siZi)

⊗n

= ∑
π∈Sn

Rπ (Z1 ⊗ . . .⊗Zn)R†
π, (12.10)

and the claim follows because the left-hand side is a limit of linear combinations of operators of
the form X⊗n, and hence also a linear combination of such operators (finite-dimensional vector
spaces are closed; we used a similar argument in Lecture 6).
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Example. It might be instructive to consider an example to clarify why Eq. (12.10) holds. For
n = 2,

∂s1=0∂s2=0 (s1Z1 + s2Z2)⊗2 = ∂s1=0 (Z2 ⊗ (s1Z1 + s2Z2) + (s1Z1 + s2Z2)⊗Z2∣
s2=0
)

= ∂s1=0 (Z2 ⊗ (s1Z1) + (s1Z1)⊗Z2) = Z2 ⊗Z1 +Z1 ⊗Z2

and now it is clear how to prove the general case.

Second proof. Write L(H) for the complex vector space of linear operators on some H. We have a
canonical isomorphism L(H)⊗k ≅ L(H⊗k). Permuting the tensor factors of L(H)⊗k corresponds
precisely to conjugating an operator Y ∈ L(H⊗k) with the corresponding permutation operator Rπ!
Therefore, Symk(L(H)) ≅ {Y ∶ [Y,Rπ] = 0}. But we know that the vectors (operators!) X⊗k

form an overcomplete basis of the symmetric subspace (from Eq. (4.6)), so the claim follows.

Lemma 12.5 gives us a way of producing contradictions by exhibiting operators that commute
with Sn but which are not linear combination of X⊗n’s, i.e., not of the form

∑
i

ziX
⊗n
i =⊕

k

(∑
i

ziT
(n,k)
X )⊗ IWn,k

. (12.11)

We will use this to prove that the Wn,k are irreducible and pairwise equivalent.
First, assume for sake of finding a contradiction that Wn,k was not irreducible. Then we

could decompose

Wn,k =Wn,k,1 ⊕Wn,k,2

as an orthogonal direct sum of two nontrivial invariant subspaces. Let Q(n,k) denote the projector
onto the first summand. Then

⊕
k′
δk,k′IVn,k

⊗Q(n,k)

is an intertwiner for the Sn action which is clearly not of the form (12.11) – this is the desired
contradiction!

We now show that no two Wn,k are equivalent. Again, we assume for sake of finding a
contradiction that Wn,k1 and Wn,k2 are equivalent, where k1 ≠ k2. This means that there exists a
nontrivial intertwiner J ∶Wn,k1 →Wn,k2 . We can lift this to obtain intertwiner for the Sn-action
on (C2)⊗n by sending a copy of Wn,k1 onto a copy of Wn,k2 , say

∣0⟩Vn,k2
⟨0∣Vn,k1

⊗ J.

Again this is not of the form (12.11) – in this case because the latter operators have no “off-diagonal
blocks” with respect to k. This is the desired contradiction.

It is also true that any operator that commutes with every U⊗n is necessarily a linear
combination of the operators Rπ (compare this with Lemma 12.5). Mathematically, we say that
the two representations span each other’s commutants. We will prove this momentarily after a
preparatory lemma.

Lemma 12.6. Let Y be an operator on (Cd)⊗n that commutes with U⊗n for every U ∈ U(d).
Then Y commutes with X⊗n for every operator X on Cd.
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Proof. Let M be a Hermitian operator.

eisM̃Y e−isM̃ = (eisM)⊗nY (e−isM)⊗n = Y

for every s ∈ R. Taking the derivative at s = 0, it follows that iM̃Y − iY M̃ = 0, i.e., [M̃, Y ] = 0.
Clearly, this implies that [M̃, Y ] = 0 for arbitrary operator M , whether Hermitian or not. But
then

[(eM)⊗n, Y ] = [eM̃ , Y ] = 0

(write the matrix exponential eM̃ as a power series; it commutes term by term with Y ). Any
invertible operator can be written in the form X = eM , and we can extend the claim by continuity
to arbitrary X.

Lemma 12.7. Let Y be an operator on (Cd)⊗n that commutes with U⊗n for every U ∈ U(d).
Then Y can be written as linear combination of the operators Rπ for π ∈ Sn.

Proof. Let H ∶= (Cd)⊗n and consider the maximally entangled state in the doubled Hilbert space,

∣Φ⟩ ∶=∑
x

∣x⟩⊗ ∣x⟩ ∈H⊗H,

where ∣x⟩ denotes some basis of H (perhaps the computational basis). It is enough to show that
(Y ⊗I) ∣Φ⟩ can be written as a linear combination of the vectors (Rπ⊗I) ∣Φ⟩, since we can always
recover Y from (Y ⊗ I) ∣Φ⟩ by using that (I ⊗ ⟨Φ∣)(∣Φ⟩⊗ I) = I, as in the proof of teleportation.

Why should the above be true? Let us consider H⊗H as a representation of Sn by Rπ ⊗ I.
Then

H0 ∶= span{(Rπ ⊗ I) ∣Φ⟩ ∶ π ∈ Sn}

is an invariant subspace, so the orthogonal projector onto H0 – let us denote it by P – commutes
with Rπ ⊗ I for every π ∈ Sn (a fact that we used many times throughout this course). As a
consequence, each block (I ⊗ ⟨x∣)P (I ⊗ ∣y⟩) commutes with Rπ. By Lemma 12.5, this means that

P =∑
x,y

Pxy ⊗ ∣x⟩ ⟨y∣ for certain Pxy ∈ span{X⊗n}.

At last, we can use the assumption. Since Y commutes with every U⊗n and hence, by Lemma 12.6,
with any X⊗n, it commutes with each Pxy, and so (Y ⊗ I)P = P (Y ⊗ I). As a consequence,

(Y ⊗ I) ∣Φ⟩ = (Y ⊗ I)P ∣Φ⟩ = P (Y ⊗ I) ∣Φ⟩ ∈H0,

which is what we wanted to show.

It is instructive to compare Lemma 12.7 with the situation that you analyzed in Problem 3.3,
which was a very special case. Lemma 12.7 is highly useful to compute averages with respect
to the uniform probability distribution on pure states (Eq. (4.3)) or with respect to the Haar
measure of the unitary group, which we will introduce next week (Eq. (13.4)). For example,
for any operator Z on (Cd)⊗n, Y ∶= ∫ dU U⊗nZU †,⊗n has these symmetries and hence can be
written as a linear combination of the permutation operators Rπ.
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Quantum state tomography
Lecture 13 Michael Walter, University of Amsterdam

Today, we will solve the task of estimating an unknown quantum state given many copies
– a task that is also known as quantum state tomography. We previously solved this for pure
states (Lecture 4), but now we allow arbitrary density operator ρ, which is significantly more
challenging. Thus, given ρ⊗n, we would like to design a POVM measurement that yields an
estimate ρ̂ ≈ ρ with high probability,

ρ⊗n Ð→ ρ̂ ≈ ρ.

First, however, we will generalize the fidelity from pure states to arbitrary density operators. It
will be convenient in the analysis of our tomography measurement.

13.1 The fidelity between quantum states

In Section 8.4 we defined the trace distance

T (ρ, σ) = max
0≤Q≤IH

tr[Q(ρ − σ)]

as a distance measure between density operators (whether pure or mixed).
Another very useful measure was the fidelity, which we defined for pure states as the

overlap ∣⟨ϕ∣ψ⟩∣ and used numerous times in our analyses. The fidelity also generalizes nicely to
mixed states. For arbitrary density operators ρ and σ on H =∶HA, we define it by

F (ρ, σ) ∶= sup
R,∣ΨAR⟩,∣ΦAR⟩

∣⟨ΨAR∣ΦAR⟩∣, (13.1)

where we optimize over arbitrary Hilbert spaces HR such that there exist purifications ΨAR

of ρ as well as ΦAR of σ. The fidelity is well-defined since you know from Lecture 8 that such
purifications always exist for HR ∶=H. Thus, 0 ≤ F (ρ, σ) ≤ 1, just as for pure states. Moreover,
F (ρ, σ) = 1 if and only if ρ = σ (the “only if” follows from the upper bound in Eq. (13.2) below).
Note that, by definition, the fidelity has a nice operational interpretation: It is close to one if
and only if there exist two purifications with overlap close to one.

When ρ = ∣ϕ⟩ ⟨ϕ∣ and σ = ∣ψ⟩ ⟨ψ∣ are themselves pure, then any purification is a tensor product
(Eq. (8.3)). Using this observation, it is not hard to see that in this case F (ρ, σ) = ∣⟨ϕ∣ψ⟩∣, so we
recover our definition for pure states.

The fidelity is monotonic with respect to partial traces:

F (ρA, σB) ≥ F (ρAB, σAB)

This follows directly from the observation that any purification of ρAB can be interpreted as
a purification of ρA, and likewise for σAB and σA. (In Problem 5.1 you proved that the trace
distance satisfies a similar monotonicity property, but with “≤”.)

When ρ or σ is mixed, it is not longer the case that there is a one-to-one relation between
fidelity and trace distance. In general, the trace distance and fidelity are related by the following
Fuchs-van de Graaf inequalities:

1 − F (ρ, σ) ≤ T (ρ, σ) ≤
√
1 − F 2(ρ, σ) (13.2)
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The upper bound is easy to prove: For any two purifications ∣ΨAR⟩ of ρ and ∣ΦAR⟩ of σ, we
have T (ρσ) ≤ T (ΨAR,ΦAR) =

√
1 − ∣⟨Ψ∣Φ⟩∣2 by the relationship (4.9) between trace distance

and fidelity for pure states. If we optimize over all purifications we obtain the upper bound in
Eq. (13.2). We will not prove (nor need) the lower bound.

A highly useful property that makes the fidelity more amenable to calculations is the fact
that in Eq. (13.1) we can in fact restrict to a single Hilbert space HR such that there exist
purificiations of both ρ and σ on HA ⊗HR. You can prove this using the results of Problem 5.2,
from where you also know that HR =HA is a valid such choice. In particular, it follows that the
supremum is in fact a maximum! Using this fact, it is not too hard to establish the following
alternative formula for the fidelity:

F (ρ, σ) = tr
√√

ρσ
√
ρ = tr

√√
σρ
√
σ. (13.3)

As in Problem 5.2,
√
M denotes the square root of a positive semidefinite operator M , defined

by taking the square root of all eigenvalues.

Remark. This can also be written as F (ρ, σ) = ∥√ρ√σ∥1, where ∥X∥1 ∶= tr[
√
X†X] = tr[

√
XX†]

is the trace norm for arbitrary (not necessarily Hermitian) operators. It can be calculated as the
sum of the singular values of X (for a Hermitian operator, the singular values are the absolute
values of the eigenvalues, so this is a proper generalization).

13.2 The measurement

The spectrum estimation measurement {Pn,k} on (C2)⊗n had a single outcome k, corresponding
to the estimate p̂ ∶= 1

2
(1 + k

n
). The key idea is that we would like to refine this measurement and

design a POVM measurement {Qk,U} with two outcomes – k and U – such that our estimate for
the unknown density operator is

ρ̂ = U (p̂
1 − p̂)U

†.

Thus, the outcome U is a unitary operator that determines the eigenbasis of ρ̂. (We should
perhaps write Qn,k,U instead of Qk,U to indicate that these are operators on (C2)⊗n. But the
notation as is is already quite a mouthful so we will keep n implicit in the notation.)

The POVM {Qk,U} has both a discrete and a continuous outcome, so we know from Section 4.1
that we need to choose a reference measure on the space of outcomes. For k we will use the
counting measure (∫ dk = ∑k, see Remark 4.1), but which measure should we choose on U(2)?
Guided by symmetry, we will choose the Haar probability measure dU , which is the unique
probability measure such that

∫ dUf(U) = ∫ dUf(V UW ) (13.4)

for any two unitaries V,W ∈ U(2) (we say that the measure is “left-invariant” and “right-invariant”).
In other words, if U is a Haar-random unitary (i.e., a random unitary with distribution the Haar
measure dU) then so is V UW , which can be interpreted as saying that we do not privilege any
unitary over any other.

Remark. We asked a similar question in the case of the POVM for pure state estimation. There,
we chose the “uniform” probability distribution dψ on the set of pure states, which was likewise
natural. In mathematical terms, if ψ is a random pure state drawn from dψ and V an arbitrary
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fixed unitary then V ψV † has the same distribution as ψ (see Equation (4.3)), and we said that
dψ is the uniquely probability measure with this property. It is not hard to verify that if U is a
Haar-random unitary then U ∣0⟩ ⟨0∣U † is a random pure state with distribution dψ.

Thus, in order for {Qk,U} to be a POVM, we need that Qk,U ≥ 0 as well as

∑
k
∫ dU Qk,U = I. (13.5)

Moreover, we would like for the POVM {Qk,U} to be a refinement of {Pn,k}, so that the
k have the same meaning as before. That is, if we forget about the outcome U then we
would like to get the same statistics for k as if we performed the measurement {Pn,k}. Since
Prσ(outcome k) = ∫ dU tr[Qk,Uσ], this means that we would like to demand that

∫ dU Qk,U = Pn,k (13.6)

which clearly implies Eq. (13.5) (since we know that {Pn,k} is a measurement).

The ansatz

What could such a POVM look like? We will make the following ansatz:

Qk,U ∝ Pn,kρ̂
⊗nPn,k = Pn,kU⊗n (

p̂
1 − p̂)

⊗n

U †,⊗nPn,k (13.7)

for a proportionality constant that we still need to determine.
To see that this is natural, we observe that, for k = n, Pn,n = Πn, the projector onto the

symmetric subspace Symn(C2). Moreover, in this case p̂ = 1, so ρ̂ = U ∣0⟩ ⟨0∣U † =∶ ∣ψ̂⟩ ⟨ψ̂∣ is a
pure state, so ∣ψ̂⟩⊗n is already contained in the symmetric subspace, hence

Qn,U ∝ Πnρ̂
⊗nΠn = ∣ψ̂⟩

⊗n ⟨ψ̂∣⊗n .

The right-hand side is exactly proportional to the uniform POVM (4.7) that we used for pure
state estimation in Lecture 4 – that’s already an encouraging sign!

Moreover, note that Qk,U has permutation symmetry (i.e., [Rπ,Qk,U ] = 0) and that it is
covariant with respect to the unitary group in the following sense: For all V ∈ U(2),

= tr [ρ⊗nQk,U ] = tr [V ⊗nρ⊗nV †,⊗nV ⊗nQk,UV
†,⊗n] tr [(V ρV †)⊗nQk,V U ] .

Note that if Qk,U corresponds to ρ̂ then Qk,V U corresponds to V ρ̂V †. What this means is that
the following two experiments produce the same result:

(i) Prepare (V ρV †)⊗n and measure the POVM {Qk,U}.

(ii) Prepare ρ⊗n, measure the POVM {Qk,U}, with outcome ρ̂, and report V ρ̂V †.

We could summarize this as

ρ↦ V ρV † ↝ ρ̂↦ V ρ̂V †.
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The proportionality constant

We now show that we can choose a suitable normalization constant in Eq. (13.7) so that Eq. (13.6)
holds true. The key observation is that with respect to the Schur-Weyl duality

(C2)⊗n ≅⊕
k

Vn,k ⊗Wn,k

we can use our usual equation Eq. (11.3) (with A = ρ̂) to write

Qk,U ∝ Pn,kρ̂
⊗nPn,k ≅ T (n,k)ρ̂ ⊗ IWn,k

(we omit the ⊕k′ δk,k′). We can thus calculate

∫ dU Pn,kρ̂
⊗nPn,k ≅ ∫ dU T

(n,k)
ρ̂

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∝IVn,k

⊗IWn,k
. (13.8)

The underbraced equation is a consequence of Schur’s lemma! Indeed, the indicated operator is
a self-intertwiner on the irreducible representation Vn,k, since

T
(n,k)
V ∫ dU T

(n,k)
ρ̂ = T (n,k)V ∫ dU T

(n,k)
U T

(n,k)

( p̂
1−p̂)

T
(n,k)
U† = ∫ dU T

(n,k)
V U T

(n,k)

( p̂
1−p̂)

T
(n,k)
U†

= ∫ dU T
(n,k)
U T

(n,k)

( p̂
1−p̂)

T
(n,k)
U†V

= ∫ dU T
(n,k)
U T

(n,k)

( p̂
1−p̂)

T
(n,k)
U† T

(n,k)
V = ∫ dU T

(n,k)
ρ̂ T

(n,k)
V

Here we used repeatedly that T (n,k)XY = T (n,k)X T
(n,k)
Y , which is clear from Eq. (11.4). In the third

step we used that the integral is invariant under the substitution U ↦ V †U .
Equation (13.8) shows that

∫ dU Pn,kρ̂
⊗nPn,k ∝ Pn,k, (13.9)

so it remains to figure out the correct normalization constant to turn this into an equality. As
usual, we only need to compare traces. On the one hand, we have

tr [Pn,kρ̂⊗nPn,k] = tr [T (n,k)ρ̂ ]dimWn,k

This trace not depend on U , so it is equal to the trace of the left-hand side operator in Eq. (13.9).
On the other hand, the trace of the right-hand side operator simply

tr [Pn,k] = dimVn,k dimWn,k = (k + 1)dimWn,k

We conclude that the appropriately normalized POVM elements are given by

Qk,U =
k + 1

tr [T (n,k)ρ̂ ]
Pn,kρ̂

⊗nPn,k. (13.10)

13.3 Analysis of the measurement

We follow the approach of Haah et al. (2015) (cf. Keyl (2006), O’Donnell and Wright (2015,
2016) and the wonderful survey O’Donnell and Wright (2017)). Similarly to when we analyzed
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the spectrum estimation measurement, we will show that the probability density tr [Qk,Uρ⊗n] is
exponentially small unless ρ ≈ ρ̂. We will need to use the full strength of the Schur-Weyl toolbox.

We start with

tr [Qk,Uρ⊗n] =
k + 1

tr [T (n,k)ρ̂ ]
tr [Pn,kρ̂⊗nPn,kρ⊗n] =

k + 1
tr [T (n,k)ρ̂ ]

tr [T (n,k)ρ̂ T (n,k)ρ ⊗ IWn,k
]

= (k + 1)m(n, k)
tr [T (n,k)ρ̂ ]

tr [T (n,k)ρ̂ T (n,k)ρ ] = (k + 1)m(n, k)
tr [T (n,k)ρ̂ ]

tr [T (n,k)√
ρρ
√
ρ
]

= (k + 1)m(n, k)
tr [T (n,k)ρ̂ ]

tr [T (n,k)√√
ρρ
√
ρ
2] ≤

(k + 1)2nh(p̂)

tr [T (n,k)ρ̂ ]
tr [T (n,k)√√

ρρ
√
ρ
2]

(13.11)

We first used Eq. (13.10), then Eq. (11.3), then that T (n,k)XY = T (n,k)X T
(n,k)
Y as well as the cyclicity

of the trace, and finally the upper bound m(n, k) ≤ 2nh(p̂) from Eq. (11.10).
We need to find a lower bound on tr [T (n,k)ρ̂ ] and an upper bound on tr [T (n,k)

X2 ], where
X ∶=

√√
ρρ
√
ρ is the operator whose trace is the fidelity (Eq. (13.3))! (We cannot use the upper

bound (11.11) since X2 is not necessarily a density operator.) To obtain these, we proceed as in
Eq. (11.11):

tr [T (n,k)ρ̂ ] = (det ρ̂)(n−k)/2 T (k)ρ̂ = (p̂(1 − p̂))(n−k)/2 T (k)
( p̂

1−p̂)

= p̂(n−k)/2(1 − p̂)(n−k)/2
k

∑
m=0

p̂m(1 − p̂)k−m

≥ p̂(n−k)/2(1 − p̂)(n−k)/2p̂k = p̂(n+k)/2(1 − p̂)(n−k)/2 = 2−nh(p̂)

(13.12)

(In contrast to Eq. (11.11), we now evaluate the trace for ρ̂, and we now lower bound the sum by
a single term.) For the upper bound, let us write {q,1 − q} for the eigenvalues of X/ tr[X].

tr [T (n,k)
X2 ] = tr [T (n,k)(X/ trX)2] (trX)

2n = (q2(1 − q)2)(n−k)/2 T (k)
( q

2

(1−q)2 )
(trX)2n

= qn−k(1 − q)n−k
k

∑
m=0

q2m(1 − q)2(k−m) (trX)2n

≤ qn−k(1 − q)n−k(k + 1)q2k (trX)2n ≤ (k + 1)qn+k(1 − q)n−k (trX)2n

= (k + 1)2−2n(h(p̂)+δ(p̂∥q)) (trX)2n

≤ (k + 1)2−2nh(p̂)F (ρ̂, ρ)2n.

(13.13)

We now use Eqs. (13.12) and (13.13) in Eq. (13.11) and obtain:

tr [Qk,Uρ⊗n] ≤
(k + 1)2nh(p̂)

2−nh(p̂)
(k + 1)2−2nh(p̂)F (ρ̂, ρ)2n ≤ (n + 1)2F (ρ̂, ρ)2n

This is the desired upper bound! Indeed, it implies that, for ever yε > 0,

Prρ⊗n(F (ρ̂, ρ) ≤ 1 − ε) =∑
k
∫ dU 1[F (ρ̂,ρ)≤1−ε] tr [Qk,U ρ̂⊗n]

≤∑
k
∫ dU 1[F (ρ̂,ρ)≤1−ε](n + 1)2 (1 − ε)2n ≤ (n + 1)3 (1 − ε)2n ,
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(1[...] denotes the characteristic function, which is equal to one when the condition is satisfied,
and zero otherwise). This expression converges to zero exponentially with n!

We can also express this in terms of the trace distance. E.g.,

Prρ⊗n(T (ρ̂, ρ) ≥ ε) = Prρ⊗n(F (ρ̂, ρ) ≤ 1 − ε2) ≤ (n + 1)3 (1 − ε2)
2n

where we have used the (easy) upper bound in Eq. (13.2) and the result that we just proved.

13.4 The Schur-Weyl toolbox

Below we assemble all important facts and formulas about the representation theory of the
n-qubit Hilbert space that we obtained past week (the “Schur-Weyl toolbox”). It contains two
slight generalizations of formulas that we discussed today:

• The lower bound in Eq. (13.14), which is proved just like in Eq. (13.12) except for a general
density operator ρ.

• The upper bound in Eq. (13.15), which is proved just like Eq. (13.13) but for general κ.

Schur-Weyl duality:

(C2)⊗n ≅ ⊕
k=...,n−2,n

Vn,k ⊗Wn,k,

X⊗n ≅⊕
k

T
(n,k)
X ⊗ IWn,k

, where T
(n,k)
X ∶= (detX)(n−k)/2 T (k)X ,

Rπ ≅⊕
k

IVn,k
⊗R(n,k)π .

Vn,k and Wn,k are pairwise inequivalent, irreducible representations of U(2) and Sn, respectively.

Dimensions:

dimVn,k = k + 1 ≤ n + 1,

dimWn,k =m(n, k) ≤ 2nh(p̂), where p̂ = 1

2
(1 + k

n
) .

There are ≤ n + 1 possible values of k.

Estimates:

2−n
[h(p̂)+δ(p̂∥p)] ≤ tr [T (n,k)ρ ] ≤ (k + 1)2−n[h(p̂)+δ(p̂∥p)] where ρ has eigenvalues {p,1 − p},

(13.14)
More generally, if X ≥ 0 and κ > 0:

tr [T (n,k)Xκ ] ≤ (k + 1)2−nκ[h(p̂)+δ(p̂∥q)] (trX)κn , where
X

trX
has eigenvalues {q,1 − q}. (13.15)
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Spectrum estimation:

Pn,k ≅⊕
k′
δk,k′IVn,k

⊗ IWn,k
,

ρ⊗n ≅⊕
k

T (n,k)ρ ⊗ IWn,k
=∶⊕

k

pk ρVn,k
⊗ τWn,k

,

and so

pk = tr [Pn,kρ⊗n] ≤ (n + 1)2−nδ(p̂∥p) ≤ (n + 1)2−n
2

ln2
(p̂−p)2

tr [Pnρ⊗n] ≥ 1 − (n + 1)22−n
2

ln2
ε2

where Pn ∶= ∑k∶∣p̂−p∣<ε Pn,k is the projector onto the universal typical subspace with parameter ε.

Beyond qubits

How does the Schur-Weyl toolbox generalize beyond qubits? This is best explained by making a
simple coordinate change and instead of by (n, k) parametrizing all representations by

λ = (λ1, λ2) = (
n + k
2

,
n − k
2
) ∈ Z2.

We can identify λ with a so-called Young diagram with two rows, where we place λ1 boxes in the
first and λ2 boxes in the second row. E.g.,

λ = (7,3) =

We always demand that λ1 ≥ λ2, corresponding to k ≥ 0. Note that the total number of boxes is
λ1 + λ2 = n, while k = λ1 − λ2 is the difference of row lengths.

If we write Vλ ∶= Vn,k and Wλ ∶=Wn,k, then the Schur-Weyl duality (12.9) becomes

(C2)⊗n ≅⊕
λ

Vλ ⊗Wλ, (13.16)

where we sum over all Young diagrams with n boxes and at most two rows.

Remark 13.1. In Examples 5.2 and 5.3 and Problem 3.1 we already discussed the irreducible
representations of S3. In the Young diagram notation, W is the trivial representation and
W is the two-dimensional representation that you proved to be irreducible in Problem 3.1.

You will verify this in Problem 6.3. Note that these dimensions agree precisely with m(3,3) = 1
and m(3,1) = 2, as they should. Together with the sign representation, W , these are all the

irreducible representations of S3 (up to equivalence). Since its Young diagram has three rows,
the sign representation does not occur in (C2)⊗3. Indeed, it would correspond to antisymmetric
tensors – but the antisymmetric subspace ⋀3C2 = {0} is zero-dimensional.

The notation λ is quite suggestive. Indeed, let us define the normalization of a Young diagram
λ by λ̄ = λ/n = (λ1/n,λ2/n), where n = λ1 + λ2. This is a probability distribution, and

λ̄1 =
1

2
(1 + k

n
) = p̂, λ̄2 =

1

2
(1 − k

n
) = 1 − p̂.

Thus, spectrum estimation can be rephrased as follows: When we measure {Pλ} on ρ⊗n and the
outcome is λ, then λ̄ is a good estimate for the spectrum of ρ. Similarly, we can describe our
POVM measurement by the POVM elements {Pλ,U ∶= Pλρ̂⊗nPλ}, where ρ̂ = U diag(λ̄)U †.
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The key point now is the following: Eq. (13.16) generalizes quite directly from qubits to
arbitrary d. This is because the relevant irreducible representations of U(d) are labeled by Young
diagrams with now (at most) d rows, while the irreps of Sn are labeled by Young diagrams with
n boxes. We thus obtain:

(Cd)⊗n ≅⊕
λ

Vλ ⊗Wλ,

where we now sum over all Young diagrams with n boxes and at most d rows. All results
obtained in this course generalize appropriately. The technical ingredients required for this are,
e.g., the Weyl dimension formula (for dimVλ) and the hook length formula (for dimWλ). The
trace tr[T (λ)X ] is a so-called character which can be estimated in the same fashion as above (or
evaluated more precisely using the Weyl character formula).

Remark. In fact, note that the core statement of the duality – that pairwise inequivalent
irreducible representations of U(d) and of Sn are lined up in “diagonal” fashion – follows from
basically identical reasoning as for d = 2. Remember that the two main ingredients were that
(i) X⊗n acts block-diagonally with respect to λ and nontrivially on the tensor factors Vλ only
(whatever this action looks like), and (ii) that every operator that commutes with all permutations
is necessarily in the span of operators of the form X⊗n. Our proof of (i) generalizes readily and
both proofs that we gave for (ii) work for arbitrary d (see Lemma 12.5; the first proof does not
even rely on the fact that Symn(Cd) is irreducible).

See, e.g., Fulton and Harris (2013), Etingof et al. (2009), Harrow (2005), Christandl (2006),
Walter (2014) for further detail that expand on our very heuristic discussion.
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Symmetry and Quantum Information March 20, 2018

Quantum circuits, swap test, quantum Schur transform
Lecture 14 Michael Walter, University of Amsterdam

In the past two weeks we used Schur-Weyl duality as an important tool to solve various
information theoretic tasks (Lectures 11 to 13). In particular we often switched back and forth
between

(C2)⊗n ≅⊕
k

Vn,k ⊗Wn,k, (14.1)

using a unitary intertwiner implied by the notation “≅”. Mathematically, this is a straightforward
operation – but how can we actually realize this transformation in practice? (We posed this
question already in Remarks 12.1 and 12.3.)

For our purposes it will be sufficient to worry about the action of the unitary group and
ignore the action of permutation group. Indeed, the projections {Pn,k} that were relevant for
spectrum estimation and compression as well as the tomography POVM {Qk,U} each act by the
identity operator on the Sn-irreps Wn,k. Moreover, we may restrict to SU(2), since we always
know that scalars act by the n-th tensor power (indeed, we derived Eq. (14.1) in Lecture 11 by
reasoning about SU(2) alone). Thus what we would like to do is to construct a unitary operator

(C2)⊗n →⊕
k

Symk(C2)⊗Cm(n,k) (14.2)

that is an intertwiner for SU(2). The n-qubit Hilbert space on the left-hand side has the
(computational) product basis

∣b1, . . . , bn⟩ = ∣b1⟩⊗ . . .⊗ ∣bn⟩ ,

while the right-hand side likewise has a natural basis that we could label

∣k,m, p⃗⟩ ∶= ∣ωk,m−n⟩⊗ ∣p⃗⟩ ∈ Symk(C2)⊗Cm(n,k) ⊆⊕
k

Symk(C2)⊗Cm(n,k).

Here, k ∈ {. . . , n − 2, n} labels the sector, m ∈ {0,1, . . . , k} our favorite basis vectors ∣ωm,k−m⟩ of
the symmetric subspace (Eq. (6.2)), and p⃗ the different copies of Symk(C2). Why is there a
vector sign in p⃗? Recall that m(n, k) was precisely the number of paths from (0,0) to (n, k) in
Fig. 11. We can label any such path by a string p⃗ = p1 . . . pn, where each pi = ± corresponding to
making a step to the right and going either up (+) or down (-). (Note that not all such strings
correspond to valid paths: some do not arrive at the right endpoint, others go below zero.)

Now, since the values of m and p⃗ are constrained by k, the vectors ∣k,m, p⃗⟩ do not naturally
live in a tensor product space! However, we can safely think of it as a subspace of the tensor
product space

Cn+1 ⊗Cn+1 ⊗ (C2)⊗n

since (i) there are at most n + 1 options for k, (ii) the dimension of Symk(C2) is k + 1 ≤ n + 1,
and (iii) each path p⃗ gives rise to a computational basis state ∣p⃗⟩. Thus, what we will be after is
an isometry

VSchur∶ (C2)⊗n Ð→ Cn+1 ⊗Cn+1 ⊗ (C2)⊗n (14.3)

This transformation is called the quantum Schur transform (Fig. 12, (a)).
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(a)

(b)

Figure 12: (a) The Schur transform (14.3). As usual we label subsystems by upper-case symbols.
(b) We can implement the measurement {Pn,k} by first applying the Schur transform and then
measuring the K-system.

Why is this convenient? The isometry nicely separates the three pieces of information that
we care about – the sector k and the corresponding data in Vn,k and in Cm(n,k) – into three
different subsystems. For example, we can now implement the spectrum estimation measurement
{Pn,k} by first applying VSchur and then measuring the K-subsystem. In other words,

Pn,k = V †
Schur (∣k⟩ ⟨k∣K ⊗ IM ⊗ IP )VSchur.

This is visualized in Fig. 12, (b). The goal of today’s lecture will be to design a quantum circuit
for the quantum Schur transform.

14.1 Quantum circuits

Just like we typically describe computer programs or algorithms in terms of simple elementary
instructions, in quantum computing we are interested in describing “quantum software” in terms
of “simple” building blocks. These building blocks are quantum gates, i.e., operations that involve
only a smaller number of qubits (or qudits). We obtain a quantum circuit by connecting the
output of some quantum gates by “wires” with the inputs of others. We will allow both gates
that apply unitaries as well measurements of individual qubits in the standard basis {∣i⟩}. In
addition, we will allow ourselves to add qubits that are initialized in a basis state ∣i⟩ (such qubits
are often called “ancillas”). For example, the circuit in Fig. 13 first adds a qubit in state ∣0⟩, then
performs the unitary

(U3 ⊗U4) (IC2 ⊗U2 ⊗ IC2) (U1 ⊗ IC2 ⊗ IC2)
and then measures one of the qubits. In the absence of measurements and initializations, a
quantum circuit performs a unitary transformation from the input qubits to the output qubits.
In the absence of measurements alone, but allow initializations, the quantum circuit implements
an isometry from the input qubits to the outputs qubits.
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Figure 13: Illustration of a quantum circuit, composed of four unitary quantum gates and a
single measurement. The first qubit is initialized in state ∣0⟩ and the other three wires are inputs
to the circuit.

The number of gates in a quantum circuit is known as the (gate) complexity of that circuit.
Intuitively, the higher the complexity the longer it would take a quantum computer to run this
circuit. This is because we expect that a quantum computer, in completely analogy to a classical
computer, will be able to implement each gate and measurement in a small, fixed amount of
time. Much of the field of quantum computation is concerned with finding quantum circuits and
algorithms of minimal complexity – with a particular emphasis on finding quantum algorithms
that outperform all known classical algorithms. For example, Peter Shor’s famous factoring
algorithm outperforms all known classical factoring algorithms. Just like quantum information
theory, this is a very rich subject on its own.

In this course, we only have time for a glance, but I encourage you to look at (or attend!)
Ronald de Wolf’s lecture notes (see de Wolf (2018)) or at the textbooks Nielsen and Chuang
(2002), Kitaev et al. (2002) for further detail if you are interested in this subject.

To practice, let us consider some interesting gates. For any single-qubit unitary U , there is a
corresponding single-qubit gate. For example, the Pauli X-operator X = ( 1

1 ) gives rise to the
so-called X-gate or NOT-gate

which maps X ∣0⟩ = ∣1⟩, X ∣1⟩ = ∣0⟩. Another example is the so-called Hadamard gate

which maps H ∣0⟩ = ∣+⟩, H ∣1⟩ = ∣−⟩. Written as a unitary matrix, H = 1√
2
( 1 1
1 −1 ).

Single-qubit gates are not enough – for example, they do not allow us to create an entangled
state starting from product states. A powerful class of gates can be obtained by performing a
unitary transformation U depending on the value of a control qubit. This standard terminology
might be slightly confusing – we do not actually want to measure the value of the control qubit.
Instead, we define the controlled unitary gate

101



by
CU(∣0⟩⊗ ∣ψ⟩) = ∣0⟩⊗ ∣ψ⟩ ,
CU(∣1⟩⊗ ∣ψ⟩) = ∣0⟩⊗ (U ∣ψ⟩)

(14.4)

(and extend by linearity). It is easy to see that CU is indeed a unitary (indeed, C(U †) is its
inverse). For example, if U is the NOT-gate then the controlled not (CNOT) gate maps

CNOT ∣0,0⟩ = ∣0,0⟩ ,
CNOT ∣0,1⟩ = ∣0,1⟩ ,
CNOT ∣1,0⟩ = ∣1,1⟩ ,
CNOT ∣1,1⟩ = ∣1,0⟩ ,

i.e.,

CNOT ∣x, y⟩ = ∣x,x⊕ y⟩ ,

where ⊕ denotes addition modulo 2. This explains why the CNOT gate is often denoted by

Remark 14.1. More generally, if U(0), U(1) are two unitaries then we can define a controlled
unitary that selects one or the other based on the control qubit, i.e.,

∣x⟩⊗ ∣ψ⟩↦ ∣x⟩⊗U(x) ∣ψ⟩ .

Another possible generalization is to use more than one qubit as the control. For example, the
doubly-controlled unitary CCU applies U if and only if both control qubits are in the ∣1⟩ state:

CCU(∣x⟩⊗ ∣y⟩⊗ ∣ψ⟩) =
⎧⎪⎪⎨⎪⎪⎩

∣x⟩⊗ ∣y⟩⊗ ∣ψ⟩ , if x = 0 or y = 0,
∣1⟩⊗ ∣1⟩⊗U ∣ψ⟩ , if x = y = 1.

We can also combine these two ideas and use, e.g., two controls to select a unitary from a family
{U(x, y)}. We will use this generalization below when constructing a quantum circuit for the
Clebsch-Gordan transformation.

Using these ingredients, we can already build a number of interesting circuits.

Remark. In fact, any N -qubit unitary can be to arbitrarily high fidelity approximated by quantum
circuits composed only of CNOT-gates and single qubit gates. We say, that the CNOT gate
together with the single qubit gates form a universal gate set. (One can show that, in fact, CNOT
together with a finite number of single qubit gates suffices.)
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Entanglement and teleportation

For example, consider the following circuit:

It is plain that this creates an ebit starting from the product state ∣00⟩. More generally, for each
product basis state ∣xy⟩ the circuit produces one of the four maximally entangled basis vectors
∣ϕk⟩ from Eq. (2.3) that we used in superdense coding and teleportation. Indeed, the circuit
maps

∣x, y⟩↦ 1√
2
(∣0⟩ + (−1)x ∣1⟩)⊗ ∣y⟩ = 1√

2
(∣0, y⟩ + (−1)x ∣1, y⟩) .

As a consequence, this allows us to write down a more detailed version of the teleportation
circuit from Lecture 2:

The doubled wires (pink) denote the classical measurement outcomes (two bits x and y, corre-
sponding to the single integer k ∈ {0,1,2,3} from last time). It is a fun exercise to verify that
this circuit works as desired, i.e., that it implements an identity map from the input qubit M to
the output qubit B.

14.2 The swap test

We can implement the swap unitary F ∶ ∣xy⟩ ↦ ∣yx⟩ by a quantum circuit composed of three
CNOTs:
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This is called the swap gate.
We can also write down a corresponding controlled swap gate, defined as in Eq. (14.4) for

U = F . Note that this is a three-qubit gate! The decomposition of the swap gate into three
CNOTs immediately yields a decomposition of the controlled swap gate into three CCNOTs –
i.e., doubly controlled NOTs, also called Toffoli gates. It is not completely straightforward to
decompose the Toffoli gate into a quantum circuit that involves only single-qubit and two-qubit
gates.

When we started studying the spectrum estimation problem in Lecture 11, we first considered
the case that we were given n = 2 two copies of our state as a “warmup” (Section 11.2). The idea
was that the two-qubit Hilbert space decomposes into the symmetric (triplet) and antisymmetric
(singlet) subspaces,

C2 ⊗C2 = Sym2(C2)⊕C ∣Ψ−⟩ .

This is of course a special case of Eq. (14.2)! In Section 11.2, we also saw that the corresponding
measurement {P2,2, P2,0} = {Π2, I − Π2} already gave useful information about the spectrum.
But how can we implement this measurement by a quantum circuit?

Consider the following circuit, which uses the controlled swap gate discussed above:

(14.5)

Why does this circuit perform the desired measurement? Suppose that we initialize the B-wire
in state ∣0⟩ and the A-qubits in some arbitrary two-qubit state ∣Ψ⟩A = ∣Ψ⟩A1A2

. The Hadamard
gate sends ∣0⟩↦ ∣+⟩ and so the quantum state right after the controlled swap gate (first dashed
line) is equal to

1√
2
(∣0⟩B ⊗ ∣Ψ⟩A + ∣1⟩B ⊗ F ∣Ψ⟩A)

After the second Hadamard gate (second dashed line), we obtain

1

2
[(∣0⟩B + ∣1⟩B)⊗ ∣Ψ⟩A + (∣0⟩B − ∣1⟩B)⊗ F ∣Ψ⟩A]

= ∣0⟩B ⊗
I + F
2
∣Ψ⟩A + ∣1⟩B ⊗

I − F
2
∣Ψ⟩A

= ∣0⟩B ⊗Π2 ∣Ψ⟩A + ∣1⟩B ⊗ (I −Π2) ∣Ψ⟩A
= ∣0⟩B ⊗ P2,2 ∣Ψ⟩A + ∣1⟩B ⊗ P2,0 ∣Ψ⟩A ,
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where Π2 = P2,2 is the projector onto symmetric subspace! The NOT gate now simply relabels
∣0⟩B ↔ ∣1⟩B, leading to

∣1⟩B ⊗ P2,2 ∣Ψ⟩A + ∣0⟩B ⊗ P2,0 ∣Ψ⟩A .

Thus, right up to before the measurement of the B-qubit (last, pink dashed line) the quantum
circuit achieves the following isometry:

∣Ψ⟩A ↦ ∑
j=0,1
∣j⟩B ⊗ P2,2j ∣Ψ⟩A .

For general density operators ΓA, this means that

ΓA ↦ Γ′BA ∶=∑
j,j′
∣j⟩ ⟨j′∣B ⊗ P2,2jΓAP2,2j′ .

since there were no measurements involved up to this point. As a consequence,

PrΓ(outcome j = k
2
) = tr [Γ′BA (∣j⟩ ⟨j∣B ⊗ IA1 ⊗ IA2)] = tr [ΓAP2,2j] = tr [ΓAP2,k]

and the post-measurement state on the A-qubits is proportional to P2,kΓAP2,k. Thus, we have
successfully implemented the projective measurement {P2,2, P2,0}! The quantum circuit (14.5) is
known as the swap test.

Applications

The swap test has many applications:

• If we choose Γ = ρ⊗2 as input state for the A-qubits, then

Pr(outcome 1) = tr [P2,2ρ
⊗2] = 1

2
(1 + trρ2) .

Thus we can estimate the purity trρ2 which gives us information about the spectrum of
the unknown quantum state ρ. This was our original motivation for implementing the swap
test (cf. Section 11.2).

• If we choose the tensor product of two pure states ∣ψ⟩⊗ ∣ϕ⟩ as input state,

Pr(outcome 1) = 1

2
(1 + ∣⟨ψ∣ϕ⟩∣2) , (14.6)

which allows us to estimate the fidelity ∣⟨ψ∣ϕ⟩∣. Thus, the swap test can be used to test two
unknown pure states for equality.

The swap test can be readily generalized to qudits.

Remark. There is a fun application of the swap test known as quantum fingerprinting, which
we might discuss in class if there is enough time (Buhrman et al., 2001): The rough idea goes
as follows: We can find 2n many pure states ∣ψ(x⃗)⟩ ∈ Ccn, indexed by classical bit strings x⃗ of
length n, with pairwise overlaps

∣⟨ψ(x⃗)∣ψ(y⃗)⟩∣ ≤ 1

2
.

Here c > 0 is some constant. Thus the quantum states live in a space of only order logn
many qubits! (How can we justify the existence of such vectors? One way is to just choose
them at random and estimate probabilities using a more refined version of our calculations for
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the symmetric subspace, see Harrow (2013) for more detail.) If we perform k swap tests on
∣ψ(x⃗)⟩⊗k ⊗ ∣ψ(y⃗)⟩⊗k then we obtain

x⃗ ≠ y⃗ ⇒ Pr(outcome 1 for all k swap tests) = (3
4
)
k

≈ 0

Thus the probability of outcome 1 is arbitrarily small, controlled only by the parameter k (but not
n). In this sense, we can use the states ∣ψ(x⃗)⟩ as short “fingerprints” for the classical bit strings
x⃗. The latter are require n bits to specify, while the fingerprints only need order k logn many
qubits (this is not even optimal, but sufficient for our purposes).

Remarkably, while this allows us to test the fingerprints pairwise for equality with high
certainty, it is not possible to determine the original bitstring ∣x⃗⟩ from its fingerprint ∣ψ(x⃗)⟩ to
good fidelity. This is ensured by the Holevo bound, mentioned briefly in Lecture 2, which ensures
that we cannot communicate at a rate higher than one classical bit per qubit sent (in the absence
of ebits).

14.3 The quantum Schur transform

Now that we have acquired some familiarity with quantum circuitry, we will turn towards solving
our actual goal for today – finding a quantum circuit for the Schur transform (14.3),

VSchur ∶ (C2)⊗n ≅⊕
k

Symk(C2)⊗Cm(n,k) Ð→ Cn+1 ⊗Cn+1 ⊗ (C2)⊗n

(cf. Fig. 12). We will follow the exposition in Christandl (2010).
How could we go about finding such a quantum circuit? Remember how we proved Eq. (14.2)

in Lecture 11. There we used the Clebsch-Gordan rule (11.9), which asserted that there exists a
unitary intertwiner

Jk∶Symk(C2)⊗C2 Ð→
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⊕
p=±1

Symk+p(C2) if k > 0,

Sym1(C2) = C2 if k = 0.
(14.7)

We started with k = 0 (zero qubits) and applied the rule in an inductive fashion – after n steps,
we managed to decompose the n-qubit Hilbert space into SU(2)-irreps. We can easily lift this
procedure from a mere counting scheme to the construction of an actual intertwiner:

(i) Construct a circuit for the Clebsch-Gordan transformation:

This circuit is supposed to implement the following functionality: For every k ≥ 0, m ∈
{0,1, . . . , k}, and b ∈ {0,1},

∣k⟩K ⊗ ∣m⟩M ⊗ ∣b⟩B ↦ ∑
p=±1
∑
m′
⟨ωm′,(k+p)−m′ ∣Jk (∣ωm,k−m⟩⊗ ∣b⟩)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∣k + p⟩K′ ⊗ ∣m′⟩M ′ ⊗ ∣p⟩P .

(14.8)
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For fixed k, the underbraced term is simply an arbitrary matrix element of the Clebsch-
Gordan transformation (14.7). Thus, (14.8) applies the Clebsch-Gordan transformation –
with k is controlled by the K input and the other two inputs corresponding to Symk(C2)
and in C2, respectively. The output subsystem K ′ contains the label k′ = k ± p of the
symmetric subspace that we ended up in, the output M ′ corresponds to the symmetric
subspace Symk′(C2) itself, and P ′ contains the path information (p = ±1).
To obtain a finite transformation, we should restrict the possible values of k that we allow to
not exceed some kmax. Then the output can be as large as kmax+1, so Eq. (14.8) (partially)
defines an isometry, which we will call a Clebsch-Gordan isometry

CG∶ Ckmax+1 ⊗Ckmax+1 ⊗C2 Ð→ Ckmax+2 ⊗Ckmax+2 ⊗C2 (14.9)

(On all other basis vectors we can define this isometry in an arbitrary way.) We know from
Fig. 11 that kmax ∶= ℓ is a good choice for the ℓ-th step (ℓ = 0,1, . . . , n − 1).

(ii) Then the quantum Schur transform can be obtained in the following inductive fashion:

=

Each Clebsch-Gordan isometry is an isometry between Hilbert spaces of size at most 2n2

and we need to apply n such maps to implement the quantum Schur transform. This already
implies (using general principles which we have not learned in this course) that the quantum
Schur transform can be efficiently implemented!

The Clebsch-Gordan isometry

We will sketch how the Clebsch-Gordan isometries can be implemented in more detail. It is clear
that a crucial role is played by the underbraced matrix elements in Eq. (14.8). In the physics
literature, these are often called the Clebsch-Gordan coefficients.

To understand the situation better, we proceed as in Lectures 6 and 7. If H is a representation
of SU(2) with operators {RU}, we previously associated with any operator M on C2 an operator

rM ∶= −i∂s=0 [ReisM ]

on H. We used these operators to analyze representations of SU(2) – in particular, to prove that
the symmetric subspaces are irreducible and to establish the Clebsch-Gordan rule! In particular,
if J ∶H →H′ is an intertwiner then the rM are likewise intertwined, i.e.,

JrM = r′MJ, (14.10)

which in particular implied that J maps eigenvectors of rZ to eigenvectors of r′Z with the same
eigenvalue. We used this in Lecture 7 to decompose a given representation simply by studying
the multiset of eigenvalues of rZ .

Indeed, recall that for symmetric subspace H = Symk(C2), RU = T (k)U is the restriction of U⊗k

and we computed previously that rZ = t(k)Z is simply the restriction of Z̃ = Z⊗I⊗. . .⊗I+⋅ ⋅ ⋅+I⊗. . .⊗
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Figure 14: Multiplicites of the eigenvalues of rZ in Symk(C2)⊗C2. The color coding indicates
the decomposition Symk+1(C2)⊕ Symk−1(C2).

I⊗Z to the symmetric subspace. The eigenvectors are precisely our favorite basis vectors ∣ωm,k−m⟩
for m = 0,1, . . . , k, with corresponding eigenvalue m − (k −m) = 2m − k ∈ {k, k − 2, . . . ,−k} (each
nondegenerate). What this means is that we can decompose an arbitrary other representation H
simply by decomposing the multiset of eigenvalues of its corresponding rZ into sets of the
form {k′, k′ − 2, . . . ,−k′}. In other words, the eigenvalue spectrum of the rZ operator uniquely
characterizes the decomposition into irreducible SU(2)-representations!

At this point it will be useful to change notation one last time, since this makes the below
arguments much more transparent (and also closer to the literature). Specifically, let us label the
basis vectors by the eigenvalue s = 2m − k, i.e., define

∣k; s⟩ ∶= ∣ω(k+s)/2,(k−s)/2⟩ ∈ Symk(C2), s ∈ {k, k − 2, . . . ,−k},

so that t(k)Z ∣k; s⟩ = s ∣k; s⟩. In the situation at hand, this means that we would like to think of
the Clebsch-Gordan isometry as a quantum circuit of the format

mapping

∣k⟩K ⊗ ∣s⟩S ⊗ ∣b⟩B ↦ ∑
p=±1
∑
s′
⟨k + p; s′∣Jk(∣k; s⟩⊗ ∣b⟩) ∣k + p⟩K′ ⊗ ∣s′⟩S′ ⊗ ∣p⟩P . (14.11)

(This amounts to a simple relabeling m ↦ 2m − k. If you prefer the old labeling, you can
conjugating with the controlled unitary ∣k⟩K ⊗ ∣m⟩M ↦ ∣k⟩K ⊗ ∣2m − k⟩S !)

Now consider the left-hand side and the right-hand side representations that appear in the
intertwiner

Jk∶Symk(C2)⊗C2 Ð→ ⊕
p=±1

Symk+p(C2). (14.12)

We shall focus on the interesting case that k > 0, since for k = 0 we can just use the identity map.

• For H = Symk(C2) ⊗C2, the group action is RU = T (k)U ⊗ U and so rZ = t(k)Z ⊗ I + I ⊗ Z.
This means that the vectors ∣k; s⟩⊗ ∣b⟩ form an eigenbasis, with eigenvalues

s + (−1)b ∈ {k + 1, k − 1, . . . ,−(k + 1)}.

(Note that ∣b⟩ ≅ ∣1; (−1)b⟩ if we identify C2 ≅ Sym1(C2) and use our new notation.)
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• For H′ = ⊕p=±1 Sym
k+p(C2), the action is R′U = T

(k+1)
U ⊕ T (k−1)U , so r′Z = t

(k+1)
Z ⊕ t(k−1)Z .

Hence the vectors ∣k′; s′⟩ form an eigenbasis, where k′ = k ± p, with eigenvalues

s′ ∈ {k′, k′ − 2, . . . ,−k′} ⊆ {k + 1, k − 1, . . . ,−(k + 1)}.

Note that, in both cases, the eigenvalues are {k + 1, k − 1, . . . ,−(k + 1)} and that each eigenvalue
appears twice, except for ±(k + 1), which implies that the representations must be equivalent!
See Fig. 14 for an illustration. This was precisely argument that we used in Lecture 7 to establish
the Clebsch-Gordan rule. Thus, we reproved the fact that there must exist a unitary intertwiner
Jk as in Eq. (14.12). Let us now go further and construct such an intertwiner precisely.

Since Jk preserves the eigenspaces, it must necessarily map the eigenvectors of eigenvalue
s′ = k + 1 onto each other, up to possibly a phase. Since any scalar multiple of an intertwiner is
again an intertwiner, we may in fact assume that

Jk (∣k;k⟩⊗ ∣0⟩) = ∣k + 1, k + 1⟩ . (14.13)

For s′ = k − 1, we likewise know that

Jk (∣k;−k⟩⊗ ∣1⟩)∝ ∣k − 1;k − 1⟩ . (14.14)

For all other eigenvalues, s′ ∈ {k − 1, k − 3, . . . ,−k + 1}, the eigenspaces are two-dimensional, so
there must exist unitary 2 × 2-matrices U(k, s′) such that

Jk (∣k; s′ − (−1)b⟩⊗ ∣b⟩) = ∑
p=±1

U(k, s′)p,b ∣k + p; s′⟩ (14.15)

for b = 0,1. Substituting s = s′ − (−1)b, we can write this as

Jk (∣k; s⟩⊗ ∣b⟩) = ∑
p=±1

U(k, s + (−1)b)p,b ∣k + p; s + (−1)b⟩ .

We can also bring Eq. (14.13) in this form by defining U(k, k + 1)+,0 = 1, and similarly for
Eq. (14.14). Thus, the Clebsch-Gordan isometry (14.11) takes the following simple form:

∣k⟩K ⊗ ∣s⟩S ⊗ ∣b⟩B ↦ ∑
p=±1

U(k, s + (−1)b)p,b ∣k + p⟩K′ ⊗ ∣s + (−1)b⟩S′ ⊗ ∣p⟩P .

In other words, the Clebsch-Gordan isometry in essence takes the form of a controlled unitary
(with input the B qubit and output the P qubit), controlled by the various inputs! This means
that it can be implemented by a circuit of the following form:

.

The notation on the right-hand side needs some explanation: In the first step, we apply a controlled
“addition” that maps ∣s⟩S ⊗ ∣b⟩B to ∣s + (−1)b⟩′S ⊗ ∣b⟩B. The middle part uses the slightly more
general notion of a controlled unitary described in Remark 14.1, mapping ∣k⟩K ⊗ ∣s′⟩S′ ⊗ ∣b⟩B to
∣k⟩K ⊗ ∣s′⟩S′ ⊗U(k, s′) ∣b⟩B. And in the last step we again apply a controlled addition, this time
mapping ∣k⟩K ⊗ ∣p⟩P to ∣k + p⟩K′ ⊗ ∣p⟩P .
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Computing the matrix elements

We still need to give a prescription for computing the matrices U(k, s′). As mentioned before,
U(k, k + 1)+,0 = 1 is the only relevant matrix element for s′ = k + 1, corresponding to Eq. (14.13),
which we restate for convenience:

Jk (∣k;k⟩⊗ ∣0⟩) = ∣k + 1, k + 1⟩ . (14.16)

To determine the other coefficients, we consider M− = ( 0 0
1 0 ). If we apply r′M− to Eq. (14.16) and

use Eq. (14.10), we obtain

JkrM− (∣k;k⟩⊗ ∣0⟩) = r′M−Jk (∣k;k⟩⊗ ∣0⟩) = r
′
M− ∣k + 1, k + 1⟩ .

Recall that rM− = t
(k)
M− ⊗ I + I ⊗M− and r′M− = t

(k+1)
M− ⊕ t(k−1)M− . Since t(k) ∣k, s⟩ ∝ ∣k, s − 2⟩ etc.

(Eq. (6.3)), it follows that

Jk (α ∣k;k − 2⟩⊗ ∣0⟩ + β ∣k;k⟩⊗ ∣1⟩) = ∣k + 1, k − 1⟩ (14.17)

for certain coefficients α and β that we can calculate explicitly. By unitarity, ∣α∣2 + ∣β∣2 = 1. But
we know from above that Jk preserves the two-dimensional eigenspace corresponding to s′ = k − 1
(Eq. (14.15)), so it follows that

Jk (γ ∣k;k − 2⟩⊗ ∣0⟩ + δ ∣k;k⟩⊗ ∣1⟩) = ∣k − 1, k − 1⟩ (14.18)

for some coefficients γ and δ. By unitarity, ∣γ∣2 + ∣δ∣2 = 1 and γᾱ+ δβ̄ = 0, which determines these
coefficients up to phase. Any choice of phase will lead to a valid intertwiner, since this is exactly
the freedom that we have from Lemma 12.2. If we define U(k, k − 1) ∶= (α β

γ δ )
−1

, then Eq. (14.15)
is satisfied for s′ = k − 1.

We can now simply keep applying r′M− to Eqs. (14.17) and (14.18) to obtain the matrices
U(k, s′) for all other values of s′.

Examples

At last, let us discuss some concrete examples to make sure that we fully understand what is
going on:

Example (n=1). For a single qubit, the quantum Schur transform is completely trivial:

It maps

∣0⟩B1
↦ ∣1⟩K ⊗ ∣1⟩S ⊗ ∣+⟩P1

∣1⟩B1
↦ ∣1⟩K ⊗ ∣−1⟩S ⊗ ∣+⟩P1

Note that the K-system is always in state ∣1⟩K and the P1-system always in state ∣+⟩P1
, corre-

sponding to the unique (0,0)→ (1,1).

Example (n=2). For two qubits, the quantum Schur transform
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maps

∣00⟩B ↦ ∣2⟩K ⊗ ∣2⟩S ⊗ ∣++⟩P
∣11⟩B ↦ ∣2⟩K ⊗ ∣−2⟩S ⊗ ∣++⟩P ,

while

∣01⟩B =
1√
2

∣01⟩ + ∣10⟩√
2

+ 1√
2

∣01⟩ − ∣10⟩√
2

↦ 1√
2
∣2⟩K ⊗ ∣0⟩S ⊗ ∣++⟩P +

1√
2
∣0⟩K ⊗ ∣0⟩S ⊗ ∣+−⟩P ,

∣10⟩B =
1√
2

∣01⟩ + ∣10⟩√
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Sym2(C2)

− 1√
2

∣01⟩ − ∣10⟩√
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈C∣Ψ−⟩

↦ 1√
2
∣2⟩K ⊗ ∣0⟩S ⊗ ∣++⟩P −

1√
2
∣0⟩K ⊗ ∣0⟩S ⊗ ∣+−⟩P .

It is instructive to verify this explicitly by following the algorithm outlined above.

Exercise. Can you write down the Schur transform (concretely) for n = 3? Compare the result
with your solution to Problem 6.3.

Outlook

The Schur transform is not only useful as a building block for quantum information processing
protocols, but it has also been used in quantum algorithms (see, e.g., Ambainis et al. (2016)).
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Quantum entropy and mutual information
Lecture 15 Michael Walter, University of Amsterdam

Today we will study the von Neumann entropy more generally and discuss its mathematical
properties. We will also introduce a new correlation measure – the mutual information. Finally,
we will introduce a quantum information processing task called (coherent) quantum state merging.
This is a very general task that encompasses several others that we previously studied in this
course, and we will explain how to solve it tomorrow.

15.1 Shannon and von Neumann Entropy

Let us first revisit the classical case. For a probability distribution {p, 1 − p} with two outcomes,
we previously defined the binary Shannon entropy as h(p) = −p log p−(1−p) log(1−p) (Lecture 9).
We will now define the Shannon entropy of general probability distribution {pi}di=1 with d many
outcomes by

H({pi}di=1) ∶= −
d

∑
i=1
pi log pi.

As before, we set 0 log 0 ∶= 0. It is clear that H({p, 1−p}) = h(p), so this is a proper generalization.
Everything that we discussed in Lecture 9 generalizes to probability distributions with d outcomes.
Note that

0 ≤H({pi}) ≤ log d. (15.1)

The lower bound is attained for deterministic distributions and the upper bound for a uniform
distribution. How to see this? For the lower bound, note that pi log pi ≥ 0 for every pi ∈ [0,1],
with equality if and only if each pi ∈ {0,1}. For the upper bound we use Jensen’s inequality
for the concave log function, which shows that ∑di=1 pi log 1

pi
≤ log(∑di=1 pi 1pi ) = log d. Since the

logarithm is strictly concave, we have equality if and only if all the 1/pi are equal.

Now consider a density operator ρ on Cd. We define its von Neumann entropy by

S(ρ) ∶= − tr[ρ log ρ].

Clearly, S(ρ) =H({pi}) for {pi}di=1 the eigenvalues of ρ (repeated according to their multiplicity).
This generalizes the definition given previously in Lecture 10 for qubits. Note that

0 ≤ S(ρ) ≤ log d,

The lower bound is attained precisely for pure states and the upper bound if and only if ρ is a
maximally mixed state, i.e., ρ = I/d. This follows directly from the discussion below Eq. (15.1).

The von Neumann entropy is the optimal asymptotic rate for compression and quantum state
transfer (Lectures 9 and 10). The basic reason is that the following asymptotic equipartition
property (AEP): For every ε > 0 there exist typical projectors Pn on (Cd)⊗n, n = 1,2, . . . , such
that

(i) tr[Pnρ⊗n]→ 1 (typicality),
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(ii) rk[Pn] ≤ 2n(S(ρ)+ε), and

(iii) the eigenvalues of Pnρ⊗nPn are within 2−n(S(ρ)±ε).

For qubits, we proved the first two property in class. In fact, we gave two constructions – one
using the eigendecomposition in Lecture 10 and a universal one using Schur-Weyl duality in
Lecture 13). The third property is also useful as we will see tomorrow. For construction in
Lecture 10, it follows readily using the continuity of the binary entropy function, and for the
other you can proceed as in the derivation of Eq. (13.14).

The first property implies that ρ⊗n ≈ Pnρ⊗nPn for large n (this follows directly from the
gentle measurement lemma, Problem 6.1). The second and then third property show that
Pnρ

⊗nPN in turn looks – roughly speaking – like a uniform probability distribution on a space of
approximately nS(ρ) qubits. This explains the term “asymptotic equipartition property”.

15.2 Entropies of subsystems and mutual information

Supose that ρABC... is a density operator on a tensor product Hilbert space. We can then not
only compute the entropy of the overall state but also the reduced density operators such as ρA
describing the subsystems, as visualized below.

In order to emphasize the subsystem, let us define the following useful notation:

S(A)ρ ∶= S(ρA)

We will often omit the subscript ρ and write S(A) when the state is clear from the context. Let
us discuss some examples for a density operator on a bipartite system:

• If ρAB is pure then

S(AB) = 0, S(A) = S(B). (15.2)

Note that S(A) = S(B) is nothing but SE(ρ), the entanglement entropy of the pure state.

• If ρAB = ρA ⊗ ρB is a tensor product of two density operators, then S(AB) = S(A) + S(B).
Indeed, if {pi} and {qj} are the eigenvalues of ρA and ρB , respectively, then {piqj} are the
eigenvalues of ρAB and so

S(AB) = −∑
i,j

piqj log(piqj) = −∑
i,j

piqj log pi −∑
i,j

piqj log qj

= −∑
i

pi log pi −∑
j

qj log qj = S(A) + S(B).

The second example shows that the von Neumann entropy is additive under tensor products (we
can also write it as S(ρ⊗ σ) = S(ρ) + S(σ) to emphasize this aspect).

When ρAB is a general density operator, it is still true that the entropy is subadditive:

S(AB) ≤ S(A) + S(B) (15.3)
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This is very important result follows, e.g., from a result called Klein’s inequality (see Nielsen and
Chuang (2002) for all details). In class, we instead gave a plausibility argument based on the
operational interpretation of the von Neumann entropy as the optimal rate for the quantum state
transfer task. Indeed, consider ∣ψ⟩⊗nABR, where ∣ψ⟩ABR is a purification of ρAB . On the one hand,
we know that Alice can (approximately) transfer her AB-systems to Bob at (a rate arbitrarily
close to) the optimal rate S(AB):

On the other hand, she can certainly first send the B-systems and then the A-systems, at a rate
S(A) + S(B).

By optimality of the former, it follows that S(AB) ≤ S(A) + S(B). This argument would be a
completely rigorous mathematical proof – except that we did not quite prove optimality! (Can
you see why Problem 6.2 is not quite enough?)

Equation (15.3) is an example of an entropy inequality. Another example is Araki-Lieb
inequality :

∣S(A) − S(B)∣ ≤ S(AB). (15.4)

We can prove it by a convenient trick that allows us to produce new entropy inequalities from
old ones. Choose a purification ∣ψ⟩ABR of ρAB . Then, using that the entropies of complementary
subsystems are the same (Eq. (15.2)),

aS(A) − S(B) = S(BR) − S(B) ≤ S(R) = S(AB),

and similarly for S(B) − S(A).

Remark. There is also a strong subadditivity inequality which asserts that S(AC) + S(BC) ≤
S(ABC)+S(C). It is not so easy to prove but enormously useful in quantum information theory.
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Mutual Information

The preceding suggests that the mutual information, defined for any density operator ρAB on
CdA ⊗CdB by

I(A ∶ B)ρ ∶= S(A)ρ + S(B)ρ − S(AB)ρ,

might be an interesting property to consider. The state transfer argument given above indicates
that this quantity to be related to the information that we lose by treating A and B as independent.
Let us discuss some of its mathematical properties:

• I(A ∶ B) ≥ 0 by the subadditivity inequality 15.3. One can show (but we will not) that
I(A ∶ B) = 0 if and only if ρAB = ρA ⊗ ρB.

• If ρAB is pure then I(A ∶ B) = 2S(A) = 2S(B).

• More generally, I(A ∶ B) ≤ 2min{S(A), S(B)} ≤ 2min{log dA, log dB}. The former is a
consequence of the Araki-Lieb inequality 15.4.

• For separable states, I(A ∶ B) ≤ min{S(A), S(B)}. It follows that if I(A ∶ B) > S(A) or
S(B) then the state ρAB is necessarily entangled!

For an example of the latter, contrast:

• For ∣Φ+⟩AB = 1√
2
(∣00⟩ + ∣11⟩), we have I(A ∶ B) = 1 + 1 − 0 = 2.

• For ρAB = 1
2 (∣00⟩ ⟨00∣ + ∣11⟩ ⟨11∣), we have I(A ∶ B) = 1 + 1 − 1 = 1.

Tomorrow, we will prove that in this case we can even extract ebits at a positive rate given many
copies of the state ρAB.

Remark. There exist further measures than the ones we have discussed here. For example, the
binary relative entropy, which we so far only defined for classical probability distributions with two
outcomes each, can be defined for general probability distributions and even for quantum states,
by S(ρ∥σ) ∶= tr[ρ log ρ] − tr[ρ logσ].

Moreover, there are other linear combinations of the von Neumann entropy that are meaningful.
For example, the conditional entropy S(A∣B) = S(AB) − S(B) and its negative, the coherent
information S(A > B) ∶= S(B) − S(AB). We will see the meaning of the latter tomorrow.

15.3 A glance at quantum state merging

We will close today’s lecture with a review of tomorrow’s topic – a task called (coherent) quantum
state merging. Here, we imagine that Alice, Bob, and an unspecified reference system share n
copies of a pure state ∣ψ⟩ABR. Alice’s and Bob’s goal is transfer the A systems from Alice to
Bob by sending as few qubits as possible, as illustrated in the below figure:
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Note that we already know how to solve this problem by sending S(A) qubits – simply use our
usual state transfer protocol (as we did above when discussing subadditivity). However, this
ignores that Bob already has part of the quantum state. Thus, this strategy will in general not
be optimal (unless there is no B system, in which we are back in the state transfer scenario).

How about if there is not R system? In this case, Alice and Bob share many copies of a pure
state ∣ψ⟩AB . Here, no quantum communication is required at all, since Bob can simply re-create
the state in his laboratory. Instead, Alice and Bob can use ∣ψ⟩AB “for free” for other purposes,
such as for distilling perfect ebits ∣Φ+⟩ at some rate (as indicated in the figure).

Tomorrow we will see that this is indeed possible and prove the following result: There exists
a quantum protocol (sometimes called the mother protocol or the fully quantum Slepian-Wolf
protocol) that, given ∣ψ⟩⊗nABR,

• achieves the state merging task by sending qubit at an asymptotic rate 1
2I(A ∶ R),

• distills ebits at an asymptotic rate 1
2I(A ∶ B).

Since 1
2I(A ∶ R) ≤ S(A), this indeed improves over the qubit rate over the naive protocol. But it

will also teach us how to distill ebits (even when ρAB is mixed), which is something that we only
alluded to briefly in Section 10.3!
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Quantum state merging via the decoupling approach
Lecture 16 Michael Walter, University of Amsterdam

Today we will study the (coherent) quantum state merging task in more detail and discuss
its many applications. We will discuss a protocol based on the decoupling approach, which is a
beautiful technique for solving quantum communication tasks. We will close with an outlook on
some of the topics that we did not manage to cover in this course.

16.1 Quantum state merging

In yesterday’s Lecture 15, we discussed the (coherent) quantum state merging task: Here, Alice,
Bob, and an unspecified reference system share n copies of a pure state ∣ψ⟩ABR. They would
like to transfer the A systems from Alice to Bob by sending as few qubits as possible and, in
addition, obtain as many ebits as possible. The situation is illustrated in the following figure,
which also already states the main result:

That is, we will see that it suffices to send qubits at an asymptotic rate arbitrarily close to
1
2I(A ∶ R) and that we will obtain ebits at an asymptotic rate arbitrarily close to 1

2I(A ∶ B).
For comparison, naively applying the quantum state transfer protocol from 10 requires a

qubit rate of S(A) ≥ 1
2I(A ∶ R) and yields no ebits at all!

Remark. There are other possible variants that can be analyzed similarly. In quantum state
splitting, the “dual” scenario, we imagine that Bob starts out with the AB systems and he
wants to send the A systems over to Alice, while holding on to the B systems. Quantum state
redistribution is the generalization of both scenarios, where we start with many copies of a
four-party state ∣ψ⟩ABCR; initially, the AC systems belong to Alice, Bob has the B systems, and
after the termination of the protocol we would like for Alice to keep A while Bob is in possession
of BC.

Special cases and applications

• If there is no B system (which you can formally model by taking HB = C) then everything
reduces to quantum state transfer. Indeed, 1

2I(A ∶ R) = S(A) and 1
2I(A ∶ B) = 0.

• Entanglement distillation: Suppose that Alice and Bob share many copies of a quantum
state ρAB and that they would like to obtain as many ebits as possible by sending (classical)
bits only. This task is known as entanglement distillation (cf. Section 10.3, where we
discussed this briefly). Note that here we do not seem to care about the R systems at
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all. Yet, the quantum state merging protocol can be usefully applied (simply choose
any purification ∣ψ⟩ABR)! Simply use teleportation (Lecture 2) to replace the quantum
communication (at rate 1

2I(A ∶ R)) by classical communication (at rate I(A ∶ R)) and
consuming ebits (at rate 1

2I(A ∶ R)). In this way, we can distill ebits at a net rate

1

2
I(A ∶ B) − 1

2
I(A ∶ R) = 1

2
(S(A) + S(B) − S(AB) − S(A) − S(AB) + S(B))

= S(B) − S(AB)

by sending bits at rate I(A ∶ R). The right-hand side quantity is called the coherent
information and often denoted by I(A > B). It can have either sign – but if it is positive
then this procedure allows us to distill entanglement at a positive rate!

For example, if there is no R system then ρAB is pure and so S(B) − S(AB) = S(B),
which means that we can distill ebits at rate S(A) = S(B)! This was a result that we had
announced in Lecture 2.

• Noisy teleportation: Once we have obtained ebits using the entanglement distillation
procedure sketched above, we can use it as a resource for other tasks, such as teleportation.
This means that using “noisy” density operators ρAB we can teleport qubits at rate
S(B) − S(AB) (provided this rate is nonnegative) by sending bits at rate

I(A ∶ R) + 2 (S(B) − S(AB)) = I(A ∶ B).

• Noisy superdense coding: Similarly, we can do superdense coding by using general density
operators ρAB. Here we take the quantum state merging protocol and do ordinary super-
dense coding with the ebits obtained. This allows us to communicate classical bits at the
“superdense rate” I(A ∶ B) by sending qubits at rate 1

2I(A ∶ R) +
1
2I(A ∶ B) = S(A). Note

that this is only interesting if I(A ∶ B) > S(A) (or S(B) > S(AB)), which is precisely the
threshold which implied that ρAB had to be entangled.

For ρAB = ∣Φ+⟩, the above reduce to ordinary teleportation and superdense coding, respectively.

16.2 The decoupling approach

How should we go about solving the state merging problem? Here is a natural template for what
such a protocol could look like:
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Here we assume that the initial state is some arbitrary state ∣Ψ⟩ABR (not necessary a tensor
power state ∣ψ⟩⊗n)! First, Alice applies a unitary UA. Next, she considers her Hilbert space as a
tensor product HA =HA1 ⊗HA2 , with n1 qubits in the first and n2 qubits in the second tensor
factor, and sends over n1 of the qubits to Bob. Lastly, Bob applies an isometry VA1B→B1B2 ,
where HB1 ≅HA ⊗HB and HB2 ≅HA2 . This protocol would be successful if it leads to a state
that is close to

∣Φ+⟩⊗n2

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
on A2B2

⊗ ∣Ψ⟩ABR
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
on B1R

. (16.1)

Hopefully we can achieve this by choosing n1 not too large (and hence n2 not too small). How
should we define the objects in the protocol so that this procedure is successful?

The crucial observation is that we can analyze the situation purely by considering the state

∣Γ⟩ABR ∶= (UA ⊗ IBR) ∣Ψ⟩ABR .

Indeed, if the state at the end of the protocol is close to the desired state Eq. (16.1) then this
implies that

ΓA2R ≈
IA2

2n2
⊗ΨR. (16.2)

Indeed, note that the isometry acts only on A1B and hence does not change the state of the
A2R systems, so we can simply trace out B1B2 in Eq. (16.1). In fact, Eq. (16.2) is not only
necessary, but also sufficient in the following sense: Since ∣Γ⟩ABR is a purification of ΓA2R and
Eq. (16.1) is a purification of IA2

2n2
⊗ΨR, Eq. (16.2) implies that there must exist an isometry

VA1B→B1B2 that maps one purification to another. If Eq. (16.2) held with equality then this
would be precisely what you proved in Problem 5.2! In the approximate case, you can use the
fidelity from Section 13.1 to prove this assertion – can you fill in the details?

The upshot of the preceding discussion is the following: Remarkably, we do not need to
cleverly construct the isometry V at all – we rather get it for free provided that we manage to
find a unitary UA such that the system A2 that remain with Alice decouple from the reference
system R in the sense of Eq. (16.2). This is the essence of the decoupling argument.

How can we obtain the unitary UA? The following theorem shows that, on average, a randomly
chosen unitary does a good job provided that we choose A2 not too large.

Theorem 16.1 (Decoupling theorem). Let ΨAR be a positive semidefinite operator on CdA⊗CdR ,
where dA = dA1dA2 . Then:

∫ dUA ∥trA1 [(UA ⊗ IR)ΨAR(U †
A ⊗ IR)] −

IA2

dA2

⊗ΨR∥21 ≤
dAdR
d2A1

tr [Ψ2
AR] .

Asymptotics

We will prove Theorem 16.1 momentarily, but let us first see why it allows us to solve the
quantum state merging problem. For this, we will use the asymptotic equipartition property (see
Lecture 15)! Let ∣ψ⟩ABR denote an arbitrary pure state and PA,n, PB,n, PR,n typical projectors
for ψA, ψB, ψR and some fixed ε > 0, respectively, and define

∣Ψ⟩AnBnRn ∶= (PA,n ⊗ PB,n ⊗ PR,n) ∣ψ⟩⊗nABR .

Then, by typicality and the gentle measurement lemma (applied three times),

∣Ψ⟩AnBnRn ≈ ∣ψ⟩⊗nABR ,
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so we may safely construct a protocol for the state ∣Ψ⟩ instead of for ∣ψ⟩⊗n.
We will follow the decoupling approach. Let us regard ∣Ψ⟩ as a vector in CdA′ ⊗CdB′ ⊗CdR′ ,

where dA′ , dB′ , dC′ denote the ranks of those projectors. We will correspondingly write ∣Ψ⟩A′B′R′ .
Then, by the asymptotic equipartition property,

dA′ ≤ 2n(S(A)+ε),
dR′ ≤ 2n(S(R)+ε),
tr [Ψ2

A′R′] = tr [Ψ2
B′] ≤ 2n(S(B)+ε)2−2n(S(B)−ε) = 2n(−S(B)+3ε) = 2n(−S(AR)+3ε).

(The last inequality requires some thought!) Together,

dA′dR′ tr [Ψ2
A′R′] ≤ 2n(I(A∶R)+5ε).

Thus, Theorem 16.1 ensures the existence of a decoupling unitary UA provided that we choose

dA′1 ≫ 2n(
1
2
I(A∶R)+ 5

2
ε)

and n large enough. In other words, we need to send over qubits at a rate arbitrarily close to
1
2I(A ∶ R). This is exactly the desired asymptotic qubit rate!

As a consequence, it is also true that we will obtain ebits at a rate arbirarily close to
1
2I(A ∶ B)> Indeed, we have 1

2I(A ∶ R) +
1
2I(A ∶ B) = S(A), dA′1dA′2 = dA′ , and you proved in

Problem 6.2 that any typical subspace for ψA has to grow faster than 2n(S(A)−δ) for any δ > 0.

16.3 Proof of the decoupling theorem

In order to prove Theorem 16.1, we first need to understand how to compute averages with
respect to the Haar measure.

Haar averages

First, suppose that M is an arbitrary operator on Cd. Then:

∫ dU UMU † = tr[M]
d

I. (16.3)

Indeed, Cd is an irreducible representation of U(d) and the invariance property (13.4) of the
Haar measure guarantees that the left-hand side of the equation is an intertwiner; thus, Schur’s
lemma implies that it is proportional to the identity operator. Since the traces agree, Eq. (16.3)
follows.

Now consider an arbitrary operator M on Cd ⊗Cd. Here one can similarly show that

∫ dU (U ⊗U)M(U ⊗U)† =
⎧⎪⎪⎨⎪⎪⎩

γΠ2 + δ(I −Π2),
αI + βF,

(16.4)

where F denotes the swap operator and α, β, γ, δ are suitable constants that depend linearly
on M . Why is this true? Let us first observe that, since Π2 = 1

2(I + F ), we necessarily have
that α = (γ + δ)/2, β = (γ − δ)/2, so it suffices to prove either expression. We will still give a
justification for each expression individually. Since the left-hand side operator
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• As a representation of U(d), Cd⊗Cd decomposes into the symmetric and the anti-symmetric
subspace, which are both irreducible. (The proof that the latter is irreducible is very similar
to the proof for the former, see Lecture 6.) By Schur’s lemma, it follows that any operator
that commutes with every U⊗2 can necessarily be written as a linear combination of Π2

and I −Π2. See Problem 3.3 where you proved a very closely related statement in the case
of qubits (d = 2)!

• On the other hand, one can prove directly that any operator that commutes with every U⊗n

can necessarily be written as a linear combination of the permutation operators {Rπ}π∈Sn –
see Lemma 12.7. The above is the special case n = 2 of this general result.

We still need to determine the coefficients. Since there are two coefficients, two equations suffice
to determine both. For example, we can compare the trace of the left and the right-hand side
operators, as well as the trace after multiplying the equation by F (which amounts to replacing
M by FM and interchanging α and β). Using that tr[I] = d2 and tr[F ] = d, this leads to

α = d

d3 − d tr[M] −
1

d3 − d tr[FM]

β = d

d3 − d tr[FM] −
1

d3 − d tr[M].
(16.5)

Sanity check

Let us first compute the average of the operator trA1[(UA ⊗ IR)ΨAR(U †
A ⊗ IR)] to get some

intuition why Theorem 16.1 should be true. Using Eq. (16.3), it is not hard to see that

∫ dUA trA1 [(UA ⊗ IR)ΨAR(U †
A ⊗ IR)] = trA1 [

IA
dA
⊗ΨR] =

IA2

dA2

⊗ΨR (16.6)

which is exactly the decoupled operator that we would like to obtain. (In case this calculation is
not clear: This follows simply by applying Eq. (16.3) to each “block” obtained by applying ⟨r∣R
on the left and ∣r′⟩R on the right.)

Note tracing out the A1 system was not important at all. However, this is only an average
statement – if we would like to show that there exist single unitaries UA that decouple then we
need to control the fluctuations! The content of Theorem 16.1 is that the fluctuations are indeed
arbitrarily small provided we choose A1 to be sufficiently large.

Proof of the theorem

We will now prove the decoupling theorem. First, it will be useful to introduce a new norm – the
Frobenius norm (or Hilbert-Schmidt norm) of an operator M , which is often denoted by

∥M∥2 ∶=
√
tr [M †M]. (16.7)

Note that ∥M∥2 is nothing but the ℓ2-norm of the singular values of M . Thus it can be related
to the trace norm in the following way:

∥M∥2 ≤ ∥M∥1 ≤
√
rk(M)∥M∥2
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(the second inequality is the Cauchy-Schwarz inequality). Let’s start calculating using the
Frobenius norm:

∫ dUA ∥trA1 [(UA ⊗ IR)ΨAR(U †
A ⊗ IR)] −

IA2

dA2

⊗ΨR∥22

= ∫ dUA tr

⎡⎢⎢⎢⎢⎣
(trA1 [(UA ⊗ IR)ΨAR(U †

A ⊗ IR)] −
IA2

dA2

⊗ΨR)
2⎤⎥⎥⎥⎥⎦

= ∫ dUA tr [tr2A1
[(UA ⊗ IR)ΨAR(U †

A ⊗ IR)]] −
1

dA2

tr [Ψ2
R] , (16.8)

where the second equality follows from Eq. (16.6). Note that only the first term depends on the
unitary UA! We can compute its average by using the swap trick – this is the main advantage of
using the Frobenius norm:

∫ dUA tr [tr2A1
[(UA ⊗ IR)ΨAR(U †

A ⊗ IR)]]

= ∫ dUA tr [((UA ⊗ IR)ΨAR(U †
A ⊗ IR))

⊗2
(IA1A′1 ⊗ FA2A′2 ⊗ FRR′)]

= tr[Ψ⊗2AR(∫ dUAU
†,⊗2
A (IA1A′1 ⊗ FA2A′2)U

⊗2
A

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
αIAA′+βFAA′

⊗FRR′)]

= α tr [Ψ2
R] + β tr [Ψ2

AR] .

In the underbraced expressen we used Eq. (16.4). The coefficients can be calculated using
Eq. (16.5):

α = dA
d3A − dA

d2A1
dA2 −

1

d3A − dA
dA1d

2
A2
= dAdA1 − dA2

d2A − 1
≤ 1

dA2

β = roles of A1 and A2 reversed = dAdA2 − dA1

d2A − 1
≤ 1

dA1

.

If we plug this back into Eq. (16.8) and take the average, we see that the α term cancels! Thus
we obtain

∫ dUA ∥trA1 [(UA ⊗ IR)ΨAR(U †
A ⊗ IR)] −

IA2

dA2

⊗ΨR∥22 ≤
1

dA1

tr [Ψ2
AR] .

Finally, we use the upper bound on the trace norm in terms of the Frobenius norm in Eq. (16.7):

∫ dUA ∥trA1 [(UA ⊗ IR)ΨAR(U †
A ⊗ IR)] −

IA2

dA2

⊗ΨR∥21 ≤
dA2dR
dA1

tr [Ψ2
AR] =

dAdR
d2A1

tr [Ψ2
AR] .

This is the desired result.

16.4 Outlook

Now that we have reached the end of this course, we will close with a brief discussion of two
important topics that we did not have time to cover this term:

• Converses: Over the past weeks, we constructed many useful information processing
protocols, but only rarely proved optimality. To do so in a systematic way requires
extending the formalism of quantum information theory to include so-called quantum
channels, which provide a natural model for arbitrary sequences of operations composed of
unitaries, measurements, adding and removing auxiliary systems, etc. On a mathematical
level, they are described by completely positive, trace-preserving maps.
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• Noisy communication channels and their capacities: Throughout these lectures, we always
assumed that we could transmit bits, qubits, etc. in a perfect way from Alice and Bob. (In
contrast, our quantum data sources were noisy and we often considered arbitrary quantum
states shared between Alice and Bob quantum states, not just idealized resource states
such as ebits.) An important part of quantum information research is to determine the
ultimate capacities of noisy communication channels to transmit bits, qubits, etc.

See, e.g., Nielsen and Chuang (2002), Wilde (2013) for much more material than what we had
time to discuss this term.
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Symmetry and Quantum Information February 27, 2018

The formalism of quantum information theory
Handout Michael Walter, University of Amsterdam

This handout summarizes the formalism of quantum information theory that we have devel-
oped in this course, starting from the axioms of quantum mechanics.

(A) Systems: To every quantum mechanical system, we associate a Hilbert space H. For a
joint system composed of two subsystems A and B, with Hilbert spaces HA and HB , the
Hilbert space is the tensor product HAB ∶=HA ⊗HB.

(B) States: A density operator ρ is an operator on H that satisfies (i) ρ ≥ 0 and (ii) tr[ρ] = 1.
Any density operator describes the state of a quantum mechanical system. If the rank
of ρ is one (i.e., of the form ρ = ψ ∶= ∣ψ⟩ ⟨ψ∣ for some unit vector ∣ψ⟩ ∈H) then we say that
ρ is a pure state. Otherwise, ρ is called a mixed state. An ensemble {pi, ρi} of quantum
states can be described by the density operator ρ = ∑i piρi.
If ρAB is the state of a joint system, the state of its subsystems can be described by
the reduced density matrices ρA = trB[ρAB] and ρB = trA[ρAB]. The latter states can
be mixed even if ρAB is pure. Conversely, any density operator ρA has a purification
ρAB = ∣ψAB⟩ ⟨ψAB ∣ (see Lectures 7 and 8).

(C) Unitary dynamics: Given a unitary operator U on H, the transformation ρ↦ UρU †

is in principle physical. In other words, the laws of quantum mechanics allow a way of
evolving the quantum system for some finite time such that, when we start in an arbitrary
initial state ρ, the final state is UρU †. If ρ = ∣ψ⟩ ⟨ψ∣ is a pure state, then this corresponds
to ∣ψ⟩↦ U ∣ψ⟩.

(D) Measurements: A POVM measurement {Qx}x∈Ω with outcomes in some finite set Ω is
a collection of operators on H that satisfies (i) Qx ≥ 0 and (ii) ∑x∈ΩQx = I. Born’s rule
asserts that the probability of outcome x in state ρ is given by the Born rule:

Prρ(outcome x) = tr [ρQx] .

If ρ = ∣ψ⟩ ⟨ψ∣ is a pure state, then this can also be written as ⟨ψ∣Qx∣ψ⟩. A POVM
measurement that has precisely two outcomes is called a binary POVM measurement, and
it has the form {Q, I −Q}, hence is specified by a single POVM element 0 ≤ Q ≤ I. We
can also consider POVMs with a continuum of possible outcomes (see Lecture 4).

We say that {Px} is a projective measurement if {Px}x∈Ω is a POVM where the Px are
projections that are pairwise orthogonal (i.e., QxQy = δx,yQx). If Ω ⊆ R, then the data
{Px}x∈Ω is equivalent to specifying a Hermitian operator with spectral decomposition
O = ∑x xPx, called an observable. If the outcome of a projective measurement is x then
the state of the system “collapses” into the post-measurement state

ρ′ = PxρPx
tr[Pxρ]

If ρ = ∣ψ⟩ ⟨ψ∣ is a pure state, then ρ′ = ∣ψ′⟩ ⟨ψ′∣, where ∣ψ′⟩ = Px ∣ψ⟩ /∥Px ∣ψ⟩∥.
Any POVM can be implemented using projective measurements on a larger system (see
Lecture 2).
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(E) Operations on subsystems: Consider a joint system with Hilbert spaceHAB =HA⊗HB .
If we want to perform a unitary UA on the subsystem modeled byHA, then the appropriate
unitary on the joint system is UA ⊗ IB. Similarly, if {QA,x}x∈Ω is a POVM measurement
on HA then the appropriate POVM measurement on the joint system is {QA,x ⊗ IB}x∈Ω.

The standard formalism of quantum information theory includes two further notions that we
did not discuss in this course: Quantum channels model general evolutions that can be obtained
by composing unitary dynamics, adding ancillas, and taking partial traces. Quantum instruments
Can be thought of as implementations of POVM measurements that not only describe the
statistics of outcomes but also model the post-measurement state.
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Symmetry and Quantum Information February 12, 2018

Problem Set 1
Michael Walter, University of Amsterdam due February 20, 2018

Problem 1.1 (The ebit is entangled, 3 points).
Let ∣Ψ⟩ = ∑i,jMi,j ∣i⟩⊗∣j⟩ ∈ Cd⊗Cd be an arbitrary quantum state, expanded in the computational
basis. Let M denote the d × d-matrix with entries Mi,j .

(a) Show that ∣Ψ⟩ = ∣ϕ⟩⊗ ∣ψ⟩ for some ∣ϕ⟩, ∣ψ⟩ ∈ Cd if and only if the rank of M is one.

(b) Conclude that the ebit state ∣Φ+⟩ ∶= (∣00⟩ + ∣11⟩) /
√
2 is entangled, as we claimed in class.

Problem 1.2 (Order of measurements, 4 points).
In this problem, you will see how the order of measurements can matter in quantum mechanics.
Let ∣ψ⟩ be an arbitrary state of a qubit.

(a) Imagine that we first measure the Pauli matrix X, with outcome x, and then the Pauli
matrix Z, with outcome z. Derive a formula for the joint probability, denoted p(x→ z), of
the two measurement outcomes.

(b) Derive a similar formula for the joint probability p(x← z) corresponding to first measuring Z
and then X.

(c) Find a state ∣ψ⟩ such that p(x→ z) ≠ p(x← z).

Problem 1.3 (Entanglement swapping, 4 points).
In class, we briefly discussed what happens when we teleport half of an entangled state. In this
exercise, you will study this situation more carefully.

(a) Let ∣ψ⟩ME be an arbitrary quantum state and consider the state ∣ψ⟩ME ⊗ ∣Φ+⟩AB. Suppose
that the M and A subsystems are in Alice’ laboratory and the B subsystem is in Bob’s
laboratory, so that they can apply the teleportation protocol as in class. (Neither Alice
nor Bob have access to the E subsystem.) Show that after completion of the teleportation
protocol, the state of the B and E subsystems is ∣ψ⟩BE .

(b) Now assume that we have three nodes – Alice, Bob, and Charlie – such that Alice and
Bob as well as Bob and Charlie start out by sharing an ebit each, i.e., the initial state is
∣Φ+⟩AB1

⊗ ∣Φ+⟩B2C
. Using teleportation as in (a), how can they establish an ebit between

Alice and Charlie?

(c) Sketch how to extend the scheme in (b) to a linear chain of N nodes, assuming that initially
only neighboring nodes share ebits.

Problem 1.4 (Distinguishing quantum states, 6 points).
The trace distance between two quantum states ∣ϕ⟩ and ∣ψ⟩ is defined by

T (ϕ,ψ) = max
0≤Q≤I

⟨ϕ∣Q∣ϕ⟩ − ⟨ψ∣Q∣ψ⟩ . (1.1)

Here, 0 ≤ Q ≤ I means that both Q and I −Q are positive semidefinite operators.
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(a) Imagine a quantum source that emits ∣ϕ⟩ or ∣ψ⟩ with probability 1/2 each. Show that the
optimal probability of identifying the true state by a POVM measurement is given by

1

2
+ 1

2
T (ϕ,ψ).

Without using this formula: Why can this probability never be smaller than 1/2?

(b) Conclude that only orthogonal states (i.e., ⟨ϕ∣ψ⟩ = 0) can be distinguished perfectly.

(c) Show that the trace distance is a metric. That is, verify that T (ϕ,ψ) = 0 if and only if ∣ϕ⟩ =
eiθ ∣ψ⟩, that T (ϕ,ψ) = T (ψ,ϕ), and prove the triangle inequality T (ϕ,ψ) ≤ T (ϕ,χ)+T (χ,ψ).

You will now derive an explicit formula for the trace distance. For this, consider the spectral
decomposition ∆ = ∑i λi ∣ei⟩ ⟨ei∣ of the Hermitian operator ∆ = ∣ϕ⟩ ⟨ϕ∣ − ∣ψ⟩ ⟨ψ∣.

(d) Show that the operator Q = ∑λi>0 ∣ei⟩ ⟨ei∣ achieves the maximum in (1.1), and deduce the
following formulas for the trace distance:

T (ϕ,ψ) = ∑
λi>0

λi =
1

2
∑
i

∣λi∣.

(e) Conclude that the optimal probability of distinguishing the two states in (a) remains
unchanged if we restrict to projective measurements.

In class, we will also use the fidelity ∣⟨ϕ∣ψ⟩∣ to compare quantum states.

(f) Show that trace distance and fidelity are related by the following formula:

T (ϕ,ψ) =
√
1 − ∣⟨ϕ∣ψ⟩∣2.

Hint: Argue that it suffices to verify this formula for two pure states of a qubit, with one of
them equal to ∣0⟩. Then use the formula from part (d).

This exercise shows that states with fidelity close to one are almost indistinguishable by any
measurement.

Problem 1.5 (POVMs can outperform proj. measurements, 4 points; Nielsen & Chuang §2.2.6).
Imagine a qubit source that emits either of the two states ∣0⟩ and ∣+⟩ = (∣0⟩ + ∣1⟩)/

√
2 with equal

probability 1/2. Your task is to design a measurement that optimally distinguishes these two
cases. Unfortunately, the states ∣0⟩ and ∣+⟩ are not orthogonal, so you know that this cannot be
done perfectly (e.g., from the previous problem).

Suppose now that your measurement is allowed to report one of three possible outcomes: that
the true state is ∣0⟩, that the true state is ∣+⟩, or that the measurement outcome is inconclusive.
However, it is not allowed to ever give a wrong answer ! We define the success probability of such
a measurement scheme as the probability that you identify the true state.

(a) Show that for projective measurements the success probability is at most 1/4.

(b) Find a POVM measurement that achieves a success probability strictly larger than 1/4.
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Problem Set 2
Michael Walter, University of Amsterdam due February 27, 2018

Problem 2.1 (Symmetries of ebit and singlet, 3 points).
Let ∣Φ+AB⟩ ∶= 1√

2
(∣00⟩ + ∣11⟩) denote the ebit state and ∣Ψ−AB⟩ ∶= 1√

2
(∣10⟩ − ∣01⟩) the singlet state.

(a) Show that the ebit state has the following symmetry: (X ⊗ I) ∣Φ+AB⟩ = (I ⊗XT ) ∣Φ+AB⟩ for
every operator X.

(b) Using part (a), deduce that (U ⊗ Ū) ∣Φ+AB⟩ = ∣Φ+AB⟩ for every unitary U .

(c) Show that the singlet state has the following symmetry: (X ⊗X) ∣Ψ−AB⟩ = det(X) ∣Ψ−AB⟩ for
every operator X.

Problem 2.2 (Product states yield independent measurement outcomes, 3 points).
Suppose that Alice and Bob share a quantum state ∣ΨAB⟩ ∈HA⊗HB . Alice performs a projective
measurement {QA,x} on her system and Bob a projective measurement {RB,y} on his system.
The order of measurement is not important, since they measure on separate subsystems.

(a) Verify that the joint probability that Alice’ measurement outcome is x and Bob’s measurement
outcome is y is given by

p(x, y) = ⟨ΨAB ∣QA,x ⊗RB,y ∣ΨAB⟩ . (2.1)

(b) Now assume that ∣ΨAB⟩ is a product state, i.e., ∣ΨAB⟩ = ∣ψA⟩⊗ ∣ϕB⟩. Using formula (2.1),
conclude that in this case the measurement outcomes of Alice and Bob are independent.

Hint: Recall that two random variables are called independent if their joint probability
distribution is of the form p(x, y) = q(x)r(y).

Problem 2.3 (Classical and quantum strategies for the GHZ game, 6 points).
Three players and the referee play the GHZ game, following the same conventions as in Lecture 3.
In particular, the referee chooses each of the four questions xyz with equal probability 1/4.

(a) Verify that the winning probability for a general quantum strategy, specified in terms of a
state ∣ψ⟩ABC and observables Ax,By,Cz, is given by

pwin,q =
1

2
+ 1

8
⟨ψABC ∣A0 ⊗B0 ⊗C0 −A1 ⊗B1 ⊗C0 −A1 ⊗B0 ⊗C1 −A0 ⊗B1 ⊗C1∣ψABC⟩ .

(2.2)

(b) Suppose that Alice, Bob, and Charlie play the following randomized classical strategy: When
they meet before the game is started, they flip a biased coin. Let π denote the probability
that the coin comes up heads. Depending on the outcome of the coin flip, which we denote by
λ ∈ {heads,tails}, they use one of two possible deterministic strategies aλ(x), bλ(y), cλ(z)
to play the game. Find a formula analogous to (2.2) for the winning probability pwin,cl of
their strategy.
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(c) In class we discussed that even randomized classical strategies such as described in (b) cannot
do better than pwin,cl ≤ 3/4. Verify this explicitly using the formula you derived in (b).

(d) Any classical strategy can be realized by a quantum strategy. Show this explicitly for the
randomized classical strategy described in (b) by constructing a quantum state ∣ψ⟩ABC and
observables Ax,By,Cz such that pwin,cl = pwin,q.
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Problem Set 3
Michael Walter, University of Amsterdam due March 6, 2018

Problem 3.1 (Irreducible representation of S3, 2 points).
In Lecture 5, we discussed that H = {(

α
β
γ
) ∈ C3 ∶ α + β + γ = 0} is a representation of S3, with

the Rπ acting by permuting the coordinates. Show that this representation is irreducible.

Problem 3.2 (Schur’s lemma, 3 points).
In this problem, you can practice Schur’s lemma. The two parts are independent of each other.

(a) Let H and H′ be irreducible unitary representations and J ∶H → H′ an intertwiner. Show
that J is proportional to a unitary operator.
Hint: Show that J† is also an intertwiner.

This strengthens part (i) of Schur’s lemma, which asserted that either J = 0 or J is invertible.

(b) Let G be a commutative group (i.e., gh = hg for all g, h ∈ G). Show that any irreducible
representation of G is necessarily one-dimensional.

Problem 3.3 (Symmetries imply normal form, 3 points).
In this problem, you will show that quantum states that commute with U or U⊗2 are tightly
constrained by these symmetries.
First, recall that the single-qubit Hilbert space C2 is an irreducible representation of U(2).
(a) Show that if ρ is a density operator on C2 such that [ρ,U] = 0 for every unitary U ∈ U(2),

then ρ = I/2.
From class you know that the two-qubit Hilbert space C2⊗C2 is not irreducible, but decomposes
into two irreducible representations of U(2): the symmetric subspace and a one-dimensional
representation spanned by the singlet ∣Ψ−⟩ = 1√

2
(∣10⟩ − ∣01⟩).

(b) Show that if ρ is a density operator on C2 ⊗C2 such that [ρ,U⊗2] = 0 for every U ∈ U(2),
then there exists p ∈ [0,1] such that

ρ = p τtriplet + (1 − p)τsinglet.

Here, τtriplet = Π2/3, τsinglet = ∣Ψ−⟩ ⟨Ψ−∣. As always, Π2 denotes the projector onto Sym2(C2).
Hint: Use Schur’s lemma.

Problem 3.4 (Post-measurement state for density operators, 3 points).
Consider a quantum system described by an ensemble of pure quantum states {pi, ∣ψi⟩}, with
corresponding density operator ρ. Suppose that we perform a projective measurement {Px}x∈Ω
on the system. In this problem, you will derive a description of the post-measurement states.

(a) Verify that tr[ρPx] equals the probability that the measurement outcome is x.

(b) Given that the outcome is x, compute the probability that the original state was ∣ψi⟩.
Hint: Use Bayes’ theorem.

(c) Given that the outcome is x, determine the ensemble of post-measurement states, and verify
that the corresponding density operator is PxρPx/ tr[ρPx].
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Problem Set 4
Michael Walter, University of Amsterdam due March 13, 2018

Problem 4.1 (Pure state entanglement, 3 points).
In class we observed that a pure state ∣ΨAB⟩ ∈HA ⊗HB is unentangled if and only if its reduced
density operators ρA and ρB are pure states. Here you will generalize this observation and show
that the maximal fidelity squared between ∣ΨAB⟩ and any product state is given by the largest
eigenvalue of ρA, denoted λmax(ρA). That is, show that

max
∥ϕA∥=∥ψB∥=1

∣⟨ΨAB ∣ϕA ⊗ ψB⟩∣2 = λmax(ρA).

Hint: Use the Schmidt decomposition discussed in Lecture 8.

Problem 4.2 (De Finetti and mean field theory, 4 points).
In this exercise you will explore the consequences of the quantum de Finetti theorem for mean
field theory. Consider a Hermitian operator h on Cd ⊗ Cd and the corresponding mean-field
Hamiltonian, i.e., the operator

H = 1

n − 1∑i≠j
hi,j

on (Cd)⊗n, where each term hi,j acts by the operator h on subsystems i and j and by the identity
operator on the remaining subsystems (e.g., h1,2 = h⊗ I⊗(n−2)).

(a) Show that the eigenspaces of H are invariant subspaces for the action of the symmetric
group.

Now assume that the eigenspace with minimal eigenvalue (the so-called ground space) is nonde-
generate and spanned by some ∣E0⟩, with corresponding eigenvalue E0. Then part (a) implies that
Rπ ∣E0⟩ = χ(π) ∣E0⟩ for some function χ. This function necessarily satisfies χ(πτ) = χ(π)χ(τ).

(b) Show that χ(i↔ j) = χ(1↔ 2) for all i ≠ j. Conclude that ∣E0⟩ is either a symmetric tensor
or an antisymmetric tensor.

Hint: First show that χ(πτπ−1) = χ(τ).

If n > d, then there exist no nonzero antisymmetric tensors. Thus, in the so-called thermodynamic
limit of large n, the ground state ∣E0⟩ is in the symmetric subspace Symn(Cd) and so the quantum
de Finetti theorem is applicable.

(c) Show that, for large n, the energy density in the ground state can be well approximated by
minimizing over tensor power states. That is, show that

E0

n
≈min
∣ψ⟩
⟨ψ⊗2∣h∣ψ⊗2⟩ = 1

n
min
∣ψ⟩
⟨ψ⊗n∣H ∣ψ⊗n⟩ .

Hint: The following fact about the trace distance will be useful. If ρ, σ are density operators and
O an observable, then ∣tr[Oρ] − tr[Oσ]∣ ≤ 2∥O∥∞T (ρ, σ), where ∥O∥∞ ∶=max∥ϕ∥=1∣⟨ϕ∣O∣ϕ⟩∣.

This justifies the folklore that “in the mean field limit the ground state has the form ∣ψ⟩⊗∞”.
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Problem 4.3 (The antisymmetric state, 5 points).
In class, we discussed the quantum de Finetti theorem for the symmetric subspace. It asserts
that the reduced density operators ρA1...Ak

of a state on Symk+n(CD) are
√
kD/n close in trace

distance to a separable state (in fact, to a mixture of tensor power states).
The goal of this exercise is to show that some kind of dependence on the dimension D is

unavoidable in the statement of the theorem. To start, consider the Slater determinant

∣S⟩A1...Ad
= ∣1⟩ ∧ ⋅ ⋅ ⋅ ∧ ∣d⟩ ∶=

√
1

d!
∑
π∈Sd

sign(π) ∣π(1)⟩⊗ . . .⊗ ∣π(d)⟩ ∈ (Cd)⊗d.

We define the antisymmetric state on Cd ⊗Cd by tracing out all but two subsystems,

ρA1A2 = trA3...Ad
[∣S⟩ ⟨S∣] .

(a) Let F = R1↔2 denote the swap operator on (Cd)⊗2. Prove the following identity, which is
known as the swap trick :

tr[F (σ ⊗ γ)] = tr[σγ]

(b) Show that T (ρA1A2 , σA1A2) ≥ 1
2 for all separable states σA1A2 .

Hint: Consider the POVM element Q = Π2 (i.e., the projector onto the symmetric subspace).

Thus you have shown that the antisymmetric state is far from any separable state. However,
note that ∣S⟩ is not in the symmetric subspace.

(c) Show that ∣S⟩⊗2 ∈ Symd(Cd ⊗Cd), while ρ⊗2A1A2
is likewise far away from any separable state.

Conclude that the quantum de Finetti theorem must have some dimension dependence.

Hint: ∣S⟩⊗2 is a state of 2d quantum systems that we might label A1 . . .AdA
′
1 . . .A

′
d (the

unprimed systems refer to the first copy of ∣S⟩ and the primed to the second). Let the
permutation group Sd act by simultaneously permuting unprimed and primed systems and
show that ∣S⟩⊗2 is in the corresponding symmetric subspace. Similarly, ρ⊗2 is an operator on
A1A2A

′
1A
′
2. How do you need to partition the systems so that ρ⊗2 is far from being separable?

Problem 4.4 (Classical data compression, 4 points).
In this exercise you will show that the Shannon entropy h(p) = −p log p − (1 − p) log(1 − p) is
the optimal compression rate for the coin flip problem discussed in class. Assume that Alice
compresses her random sequence of n coin flips by applying a function En∶{H,T}n → {0,1}⌊nR⌋,
and Bob decompresses by applying a corresponding function Dn∶{0,1}⌊nR⌋ → {H,T}n.

(a) Which are the coin flip sequences that are transmitted correctly? Find an upper bound on
their cardinality in terms of R.

(b) Show that, if R < h(p), then the probability of success tends to zero for large n.

Hint: Distinguish between typical and atypical sequences of coin flips.
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The following exercises are offered as additional opportunity for practice. They will not be graded.

Optional Problem 4.5 (Entanglement witness for the ebit).
Recall that an entanglement witness for a quantum state ρAB is an observable OAB such
that tr[OAB ρAB] > 0, while tr[OAB σAB] ≤ 0 for every separable state σAB. Construct an
entanglement witness for the ebit state ∣Φ+AB⟩ = 1√

2
(∣00⟩ + ∣11⟩).

Hint: Use the claim of Problem 4.1 to your advantage!

Optional Problem 4.6 (Trace distance and observables). In this problem, you will show that
density operators ρ and σ with small trace distance T (ρ, σ) have similar expectation values.

(a) Show that, for every two Hermitian operators M and N , ∣tr[MN]∣ ≤ ∥M∥1∥N∥∞. Here,
∥M∥1 is the trace norm that you know from class (i.e., the sum of absolute values of the
eigenvalues of M) and ∥N∥∞ ∶=max∥ϕ∥=1∣⟨ϕ∣N ∣ϕ⟩∣ is the operator norm (which can also be
defined as the maximal absolute value of the eigenvalues of N).

(b) Conclude that, for every observable O, ∣tr[ρO] − tr[σO]∣ ≤ 2 ∥O∥∞ T (ρ, σ).

This confirms the hint given in Problem 4.2, part (c).

(c) Find a (nonzero) observable for which the bound in part (b) is an equality.
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Problem Set 5
Michael Walter, University of Amsterdam due March 20, 2018

Problem 5.1 (Monotonicity of the trace distance, 1 point).
Show that, for every two density operators ρAB and σAB, T (ρA, σA) ≤ T (ρAB, σAB).

Problem 5.2 (Purifications, 5 points).
In this problem, you will establish some useful facts concerning purifications that will also be
helpful in the remainder of this problem set. Throughout, let ρA be a density operator on a
Hilbert space HA. First, you will show that any two purifications are related by an isometry:

(a) Show that if ∣ΨAB⟩ ∈HA ⊗HB and ∣ΦAC⟩ ∈HA ⊗HC are two purifications of ρA such that
dimHB ≤ dimHC , then there exists an isometry VB→C such that ∣ΦAC⟩ = (IA ⊗ VB→C) ∣ΨAB⟩.
Hint: Use the Schmidt decomposition.

In particular, when HB ≅HC then this shows that the two purifications are related by a unitary,
which is something we asserted but did not prove in class.

Next, you will construct a particular purification of ρA (sometimes called the standard
purification) and see how symmetries can be lifted. For simplicity, assume that HA = Cd.
(b) Show that ∣ΨAB⟩ ∶= (

√
ρA ⊗ IB)∑di=1 ∣ii⟩ is always a purification of ρA. Here, HB = Cd, and√

ρA is defined by taking the square root of each eigenvalue of ρA while keeping the same
eigenspaces.

(c) Show that this purification has the following property: For every unitary UA, [UA, ρA] = 0
implies that (UA ⊗ ŪB) ∣ΨAB⟩ = ∣ΨAB⟩. Here, ŪB denotes the complex conjugate of UA.

Problem 5.3 (De Finetti theorem for permutation-invariant quantum states, 5 points).
In this problem, you will extend the quantum de Finetti theorem from states on the sym-
metric subspace to arbitrary permutation-invariant states. A quantum state ρA1...AN

is called
permutation-invariant if [Rπ, ρA1...AN

] = 0 for all π ∈ SN .

(a) Give two examples of permutation-invariant quantum states that are not just states on the
symmetric subspace.

Now let ρA1...AN
be an arbitrary permutation-invariant quantum state on (Cd)⊗N .

(b) Show that the reduced density operators for any fixed number of subsystems are all the same.
That is, show that ρAi1

...Aik
= ρA1...Ak

for all 1 ≤ k ≤ N and pairwise distinct indices i1, . . . , ik.

By monogomy, we would therefore expect that a de Finetti theorem should also hold in this
situation. You will prove this in the remainder of this exercise:

(c) Show that there exists a pure state ρ(A1B1)...(ANBN ) on SymN(Cd ⊗Cd) ⊆ (Cd ⊗Cd)⊗N such
that ρA1...AN

= trB1...BN
[ρ(A1B1)...(ANBN )].

(d) Conclude that, for every 1 ≤ k ≤ N , there exists a probability measure dµ on the set of density
operators on Cd such that T (ρA1...Ak

, ∫ dµ(ρ)ρ⊗k) ≤
√
d2k/n, where n = N − k.

Problem 5.4 (Universal classical data compression, 4 points).
Given R > 0, construct a data compression protocol at asymptotic rate R that works for every
classical data source that emits bits with probabilities {p,1 − p} such that h(p) < R.
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Problem Set 6
Michael Walter, University of Amsterdam due March 27, 2018

Problem 6.1 (Gentle measurement, 3 points).
In this problem, you will derive a useful technical result known as the gentle measurement lemma.
Let ρ be a quantum state and 0 ≤ Q ≤ I a POVM element.

(a) Show that if tr[ρQ] ≥ 1 − ε then T (ρ,
√
Qρ
√
Q

tr[ρQ] ) ≤
√
ε.

Hint: First prove the result for pure states.

(b) Explain in one sentence why this result is called the gentle measurement lemma.

Problem 6.2 (Quantum data compression, 3 points).
In this problem you will show that there cannot exist typical subspaces with rates smaller than
the von Neumann entropy. Thus, let ρ be a density operator on C2 and Hn ⊆ (C2)⊗n an arbitrary
sequence of subspaces, with corresponding projectors Pn, such that dim(Hn) ≤ 2nR for all n.
Show that either R ≥ S(ρ) or tr[ρ⊗nPn]→ 0.

Problem 6.3 (Schur-Weyl duality, 8 points).
Your goal in this exercise is to concretely identify irreducible representations of U(2) and of Sn
in the n-qubit Hilbert space, and to explicitly realize the Schur-Weyl duality in a special case.
Let k ∈ {0,1, . . . , n} be an integer such that n − k is even.

(a) Show that the invariant subspace

V ′n,k ∶= {∣ϕ⟩⊗ ∣Ψ−⟩
⊗(n−k)/2 ∶ ∣ϕ⟩ ∈ Symk(C2)} ⊆ (C2)⊗n

is an irreducible U(2)-representation equivalent to Vn,k. As always, ∣Ψ−⟩ denotes the singlet,
and U(2) acts on (C2)⊗n by U⊗n. How can you obtain further U(2)-representations in (C2)⊗n
that are equivalent to Vn,k?

Hint: Recall the symmetry of the singlet state from Problem Set 2.

(b) Show that the invariant subspace

W ′
n,k ∶= span{Rπ (∣0⟩

⊗k ⊗ ∣Ψ−⟩⊗(n−k)/2) ∶ π ∈ Sn} ⊆ (C2)⊗n

is an irreducible Sn-representation equivalent to Wn,k. How can you obtain further Sn-repre-
sentations in (C2)⊗n equivalent to Wn,k?

Hint: You are allowed to use the statement of Schur-Weyl duality.

Now consider the case of three qubits. Here, n = 3, so the only two options for k are k = 1,3.
(c) Show that W3,3 is equivalent to the trivial representation C, while W3,1 is equivalent to the

two-dimensional irreducible representation H = {(α,β, γ) ∶ α + β + γ = 0} from Problem 3.1.

(d) Construct a unitary operator (V3,3 ⊗C)⊕ (V3,1 ⊗H)→ (C2)⊗3 that is an intertwiner for the
actions of both U(2) and S3.

Hint: In (c), construct an explicit intertwiner H ≅W ′
3,1 that you can re-use in (d).
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